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Existing pattern recognition and classification

algorithms in computer vision require vast amounts of

computations on input data. As a result, memory access time

is a critical parameter in system performance. Tremendous

parallelism in structure and algorithm is required for the

system to operate in real-time. A preprocessing structure

for qualitative feature extraction which meets these system

requirements is presented.

K In general, the structure architecture consists of a

cellular array of pixel-processors each containing an

inherently parallel associative memory element. As such,

memory access time is minimal and parallelism is maximized.

By varying this basic structure with regard to

interconnection and additional logic, specific structures

result which are capable of extracting measures of specific
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qualitative features.

Two specific structures are described which extract,

respectively, the qualitative features of texture

regularity and line trend. Applications of these

structures are presented. Low-level simulation and

performance estimates indicate these applications are

viable and amenable to real-time operation. Suggestions

for the development of structures which extract other

features or multiple features are described.

p"

V.%
I.%

I.

. . . p. . -. a



Special Associative Preprocessing Structures

for Qualitative Feature Extraction

by

Michael C. Bibby

A THESIS

submitted to

Oregon State University

in partial fulfillment of .3
the requirements for the

degree of

Accesioni For
Master of Science

N~TIS CRA&I
DTiC TAB ]
Urannourced

Completed June 11, 1986 By.. ------

Commencement June 1987
AvailabIity Codes

Dit A\,ca a:-d Ior



ACKNOWLEDGEMENT

I would like to express my appreciation to all the

people who have encouraged and supported me during the

preparation of this thesis. In particular, many thanks to

Professor V. Michael Powers, my major professor, for his

guidance, advice, and patience during the last two years.

My success in this endevor can be largely attributed to his

assistance.

Many thanks to other members of my Masters Committee:

Professor W. J. Kolodziej and Professor B. E. Petersen, for

their time and help during my study at the University.

Thanks, as well, to Professor G. C. Alexander for his

support in the formulation of my program.

I thank the United states Army and the United States

Military Academy for their confidence in my success by

funding my schooling.

My special thanks to my wife Cheryl. Without her

constant loving support, encouragement, and understanding,

I would not have reached this stage of my education. To my

children, Michael, Matthew, and Lisa, who have missed their

father, a special thanks as well.

Finally, I would like to thank my parents, Merl and

Vi, for their encouragement and support during our stay in

Oregon.

i.i



V2

TABLE OF CONTENTS

Chapter 1 INTRODUCTION 1
1.1 Computer Vision: An Overview 1
1.2 Purpose 4
1.3 Goals and Objectives 5
1.4 Chapter Outline 7

Chapter 2 ASSOCIATIVE MEMORY 10
2.1 Introduction 10
2.2 Associative Memories 12

2.2.1 A Basic Model 12
2.2.2 Organizations 15
2.2.3 An Implementation 18

2.3 Associative Array Processors 21

Chapter 3 CELLULAR LOGIC ARRAYS 23
3.1 Introduction 23
3.2 Cellular Arrays 24

3.2.1 Organizations 26
3.2.2 Operations 28

3.3 Cellular Logic Computers 31

Chapter 4 STRUCTURES FOR FEATURE EXTRACTION 34
4.1 Introduction 34
4.2 A General Structure 37
4.3 Specific Structures 42

4.3.1 "Texture" Structures 42
4.3.2 "Shape" Structures 51

4.4 Multi-Feature Structures 56

Chapter 5 APPLICATIONS 58
5.1 Introduction 58
5.2 Focusing By Texture Analysis 59

5.2.1 Development 60
5.2.2 Algorithms 64
5.2.3 Modeling Input 72
5.2.4 Experimental Results 80
5.2.5 Analysis and Conclusions 82

5.3 Orientation By Line Trend 84
5.3.1 Development 85
5.3.2 Algorithm 88
5.3.3 An Example 89
5.3.4 Conclusion 92

5.4 Other Applications 93



Chapter 6 SUMMARY 96
6.1 General 96
6.2 Analysis of Goals and objectives 98 5

6.3 FES Performance 100
6.4 Further Research Tasks 102

BIBLI OGRAPHY 104

APPENDIX 107



LIST OF FIGURES

Figure Page

1.1 A Machine Paradigm for Computer Vision 2

2.1 Associative Memory Model 13

2.2 An Example Search Using Associative Memory 14

2.3 Associative Memory Organizations 17

2.4 A Functional Diagram of an Associative Memory 18

2.5 Basic Memory Cell 19

2.6 Structure of a 1-bit Match Logic 20

3.1 A Rectangular, Two-Dimensional Cellular Array 25

3.2 A Cellular Triangle 27

4.1 Block Diagram of the FES 38

4.2 The Cellular Logic Array in FES 40

4.3 An Interior Cell in the
FES Cellular Logic Array 41

4.4 A Texture Paradigm 43

4.5 The Process of Statistical Texture Analysis 44

4.6 FES for Texture Features 47

4.7 The Output Logic "Adder" 48

4.8 FES for Shape Feature 53

4.9 Masks for Highlighting Edges 54

5.1 A 16 x 16 Pixel "Small Block" 61

5.2 Unfocused 16 x 16 Pixel "Small Block" 62



5.3 Two Histograms 62

5.4 Flowchart for the Single-Step Algorithm 65

5.5 Focusing Example 67

5.6 Operation of the Binary Algorithm 69

5.7 Standard Deviation Versus Focus Position 70

5.8 Point Projection Model 73

5.9 The Image Plane 75

5.10 Blurring Templates 77

5.11 Graphical Results 81

5.12 A Template Matching Example 86

5.13 Flowchart of Orientation Algorithm 88

5.14 Example Data Transformations
for HV Sum Calculations 90

5.15 HV Sum Versus Position Angle 92

V

U

o. °.



LIST OF TABLES

Table Page

1.1 Examples of Computer Vision Applications 3

3.1 Summary of Cellular Logic Computers 33

5.1 Simple Example Data 66

5.2 Example Inputs 80



Special Associative Preprocessing Structures
for Qualitative Feature Extraction

Chapter 1 INTRODUCTION

1.1 Computer Vision: An Overview

Man has dreamed of constructing intelligent automata

for ages. Since the development of the Turing machine

around 1950, the dream has been pursued primarily by

workers in the field of artificial intelligence. Their

goal has been to endow computers with information-

processing capabilities comparable to those of biological

organisms (Ballard and Brown, 1982). One of the basic

goals of artificial intelligence is to enable machines to

deal with sensory input.

"Computer vision largely deals with the analysis of

pictures in order to achieve results similar to those

obtained by man" (Levine, 1985). From (Ballard and Brown,

1982): "Computer vision is the construction of explicit,

meaningful descriptions of physical objects from images."

These definitions are exemplified in a simplified machine

paradigm for computer vision as shown in Figure 1.1.

Extracted from (Levine, 1985), the diagram consists of two

computational stages. The first is concerned with

"low-level" techniques and is the subject of this thesis.

The second stage, picture interpretation, constitutes

.:.: ..:: -. . ... -. . .. . .- . - . . .
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Array Coded Signals Symbols

Input% PICTURE PICTURE Output
PROCESSING INTERPRETATION

Low Level High Level

Figure 1.1 A Machine Paradigm for Computer Vision.

"high-level" processing. Here, input from the first stage

is processed to produce a symbolic output which describes

the input picture. Feedback paths which probably exist

from the high-level to the low-level stages are ignored.

There exist several layers of analysis in the picture

processing stage:

(1) Sensor Representation: Within this level are

contained the functions of image sampling, quantization,

and coding. More simply phrased, the concern is how the

machine represents an image.

(2) Preprocessing: The types of activities in this

level may include noise removal, restoration, enhancement,

or other operations with regard to the image data.

(3) Feature Extraction: Coding of the picture data

into quantities representative of qualitative features

occurs in this level. Here, we arq concerned with useful

descriptive qualities of the input. For example, some

common features that may be considered and symbolically

. o-
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represented are color, texture, and shape.

These levels emphasize the nature of computer vision

as being that of picture analysis. Synthesis of pictures,

on the other hand, is commonly referred to as "computer

graphics."

There are many applications of picture processing.

Currently, the three most active areas, with respect to

research, are biomedical image processing, remote sensing,

and industrial automation (Levine, 1985). Table 1.1,

extracted in part, from (Ballard and Brown, 1982), displays

a more complete listing of computer vision applications.

Table 1.1 Examples of Computer Vision Applications

Domain Tasks

Robotics Identify or describe objects in
scene. Industrial tasks.

Remote Sensing Improve images, resource
analyses, weather prediction.

Military Spying, missile guidance,
tactical analysis.

Astronomy Improved images, chemical
composition analysis.

Biomedical Diagnosis of abnormalities,
operative and treatment
planning, pathology,
cytology, karyotyping.

Chemistry Analysis of molecular
compositions.

Physics Find new particles, identify

tracks.
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Recent developments in systems for computer vision

are reviewed in some detail within the next two chapters.

1.2 Purpose

The bibliography of this thesis represents a sampling

of the research which has been conducted in computer

vision. Reading only a few of these references should

convince the reader that modeling human vision with a

computer system is, indeed, a difficult task. Even

so-called simple approaches to this task require a

background in mathematics, statistics, physics, optics, and

electronics for basic understanding.

One premise of this paper is that a computer vision

system should be highly parallel in structure and algorithm

in order to conduct the massive amounts of computations

required for real-time pattern recognition and

classification. This premise is supported by literature

reporting the development of highly parallel structures,

such as cellular logic arrays, for computer vision

implementations. It would seem that these implementations

would also contain memory elements possessing inherent

parallelism (associative memories). However, with only a

few exceptions, this has not occurred.

The purpose of the research summarized in this thesis

is to design and examine a style of architecture for

computer vision which is (1) simple, compared to current

4..
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implementations, and (2) highly parallel with respect to

memory as well as structure. As a first step in our design

we define the problem and establish a set of goals and

objectives.

1.3 Goals and Objectives

Part of defining any problem requires setting

limitations and making assumptions. Recalling Figure 1.1,

we intend to design a structure which will accomplish

preprocessing and feature extraction of the input picture.

In accomplishing this "low-level" processing we will assume

that the input to our structure has been "represented" by

image sampling, quantization, and coding. In order to

concentrate on concepts rather than details, we present cur

design at a structural level.

With this problem definition in mind we may classify

our expectations for this structure into three categories

of goals and objectives:

(1) Simplicity: A goal of our structure will be

simplicity in architecture. Simplicity in hardware will

limit cost. The structure should be "small" in scale so

that an implementation may be possible on one VLSI chip.

Additionally, the on-chip design should be "regular" such

that component layout and interconnections are relatively

simple. The design should minimize overhead in both tiwe

and hardware caused by too general of a design.
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A final goal, considered under this general heading

of simplicity, is in regard to chip function. The chip

should simplify the input data (decrease the bandwidth) for

high-level processing.

(2) Parallelism: Parallelism is a primary goal in

that an increase in computational speed is thereby

achieved. The basic structure must be parallel in

architecture, utilize inherently parallel associative

memory, and allow for pipelining where repetitive,

sequential computations are required.

(3) Flexibility: Another primary goal of the

structure is that it be versatile. The architecture should

be able to perform a variety of operations upon the input

picture data, thus enabling the detection or extraction of

a variety of features. The structure should be applicable,

as well, to performing standard computer vision

preprocessing such as noise removal or enhancement.

The chip design should be such that the size may be

expanded as technology develops. Until this time, however,

the chips should have the capability to be "stacked"

(placed together in a manner to allow for preprocessing of

larger input pictures). In this regard, there should not

develop a problem in the handling of border information.

At this point, we have introduced the subject of

computer vision and set the stage for the design of an

associative picture processing (or preprocessing) structure

for qualitative feature extraction. The actual design will

7.........



T VT ' '.

7

evolve during the next several chapters.

1.4 Chapter Outline

Together, Chapter 2 and Chapter 3 are basically a

review of literature. In the former chapter the principles

and concepts of associative memory and associative

processing are reviewed. A basic model of an associative

memory is presented. Various organizations for

implementation of this type memory are discussed. A survey

of current associative array processors and their

application to computer vision completes Chapter 2.

Chapter 3 reviews the principles and concepts of cellular

logic arrays and cellular logic processing. Different

array organizations are discussed with a summary of

operations which can be performed and are applicable to

computer vision. This chapter ends with a section which

surveys cellular logic computers and their use in computer

vision.

In Chapter 4, we marry the concepts of associative

processing and cellular logic processing to develop an

associative preprocessing structure. Initially, a general

design of this structure is presented. Called a FES (for

Feature Extracting Structure), the purpose of the structure

is to preprocess input image data and extract a qualitative

feature of the image. These features may be used in higher

level pattern recognition and classification algorithms.

I"
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In Section 4.3 specific FES's are considered which

will produce, as output, a specific feature of the input

picture such as a "shape" or "texture" attribute. We

present specific structures and a*gorithms for the

extraction of the texture feature of "regularity" and the

shape feature of "line trend".

In the final section of Chapter 4, multi-feature

FES's are hypothesized. This structure appears to be

capable of simultaneously producing a set of qualitative

features. This implies that the FES approach is even more

valuable in computer vision applications.

Applications of the FES are presented in varying

levels of development in Chapter 5. In our first

application, we use a FES adapted for extracting the

texture feature of "regularity" as an aid to focusing for

vision or photographic systems. By way of verification, we

have modeled the focusing process and conducted

experiments. Analysis of the experimental results leads to

a conclusion that the FES is useful in focusing. Programs

and experimental data for this focusing application are

contained in the Appendix.

A second example application involves the use of a

FES adapted for detecting the shape feature of "line

trend". The data produced here may be used as an aid to

picture orientation in a vision system. Although a

verification is not conducted at a level which is

comparable to the modeling and experiments performed for

. ., •*o... .." " • " " -- -" ,' " - - " ,-; -.,-: ,-- .: .- . . ..
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the first application, we conclude this application is

viable as well.

In the last section of Chapter 5, we consider other

seemirgly practical applications for the FES. Presented as

a collection of promising ideas, this section highlights

the potential of the FES.

In Chapter 6 we summarize the material presented in

this thesis. The important concepts and conclusions are

reviewed and we analyze the FES with respect to the goals

and objectives set forth in this chapter. The performance

of the FES is estimated with regard to cost, size and

speed. Based upon these estimates we conclude that the FES

is capable of real-time picture processing. In the final

section, suggestions are made for future research in

associative preprocessing structures for qualitative

feature extraction.

The Bibliography represents more than the sum of the

references within each chapter. Here, nearly all of the

"experts" in the field of computer vision have been

represented by some of their most recent works.

..
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Chapter 2 ASSOCIATIVE MEMORY

2.1 Introduction

It has been at least 25 years since the conception of

the idea of associative processing. In the past,

implementation problems and high hardware costs of

associative memories have limited associative processing to

small and highly specialized systems. However, advances in

computer technology and the development of new

architectural concepts have made the design of larger, more

flexible associative processing systems possible (Yau and

Fung, 1977).

One premise of this thesis is that associative

processing is an important concept applicable to computer

vision systems. Such systems require tremendous speed and

parallelism to operate in a real-time environment. Due to

the inherent parallelism of associative memories, it is

realistic to expect that future vision systems will possess

associative memory as an integral component. With the

rapid development of large-scale integrated-circuit (LSI)

technology, implementation costs of these memories have

been greatly reduced. It is anticipated that associative

memories will be used extensively in a variety of future

-..u __. .- _ . ,,,, ... _,.:.. * * . . . . . . . . - .*, .
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processing systems (Foster, 1976). For example,

associative memory has an established role in memory

management systems. A new scheme which uses sizeable

associative memories to increase memory management

performance is detailed in (Thakkar, 1986).

Before proceeding further, some basic definitions are

required. An associative memory is defined as a storage

device which stores data in cells. Thess cells can be

accessed or loaded on the basis of their contents. An

associative processor utilizes an associative memory as an

essential component. Data transformation operations, both

arithmetic and logical, can be performed over many sets of

arguments with a single instruction. Finally, an

associative array processor is a single-instruction,

multiple-data (SIMD) structure comprised of multiple

associative processors (Hwang and Briggs, 1984).

The value of using associative memory instead of

random access memory (RAM) can best be seen by comparison.

RAM requires a word "address" to access stored data. This

address must be provided, either directly or indirectly, by

the user. In all cases, accesses are done in a sequential

manner and only one word of memory may be accessed at a

time. In associative memory words are accessed based upon

their contents. As such, no user supplied address is

required. Words are accessed in parallel, allowing for

multiple accesses using a single instructicn. Asscciative

memory is best used in non-numeric data processing. .n
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fact, when conducting floating-point operations, the use of

RAM achieves greater performance.

The most significant advantage of associative memory

use lies in its ability to perform parallel search and

comparison operations at a rate not possible using RAM.

This is shown via an example in Section 2.2.1. The price

paid for this remarkable speed advantage is that of

hardware cost. Recent estimates show associative memory to

be approximately 1.4 to 1.6 times more expensive than

comparable RAM (Foster, 1976).

2.2 Associative Memories

Having introduced the concept of associative memory,

we now proceed to examine its structure in some detail. A

basic model is presented and the operation of this

structure is shown by an illustrative example. Associative

memory organizations are discussed followed by an example

associative memory implementation.

2.2.1 A Basic Model

The structure of a "basic" associative memory is

given in Figure 2.1. In this model, an associative memory

is shown to be an array of bit-cells. The entire array,

then, consists of n words each having m bits. Each cell in

the array contains a one-bit memory element and associated
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comparison logic gates. This logic-in-memory is what

enables parallel read or write operations to occur in the

memory array.

C

C *.Comran d c;:vcr

I...... , askng

B. bu slicev T
_____i i I ~ t

* ..

W (word) I IT

n words

M i, -S.ord Cg;~szer

z ? n : : l ."

The 3, :vI

Figure 2.1 Associative Memory Model
(Foster, 1976)

In a parallel search/comparison operation,

comparisons and masking are involved in the execution. The

comparand register is used to hold the "key" oper-and being

compared or searched for. The masking register is used to

enable or disable the bit-slices required for the

operation. A bit-slice is a column of bit-cells of all

* .E.L. t S. - -t &. aS-
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words at the same position. A bit position disabled by the -4

pattern in the masking register is said to be "masked".

The indicator register (and one or more temporary

registers) are utilized for holding the current (or

previous) match patterns. With this structure in mind we

consider the example depicted in Figure 2.2.

Query: Sc-rch for those studencs whose ages .re in the range (21. 31)

0 0 0 21 0 First matching key

C 0 0 0 31 0 . Second atching key

M 00...o 0 00 ... I,..1 00..0

I T

Nixion Il CE 191 1

Smith I -E22 4 1 1

Jones 0o Math I 33 4a

i EE 21 2 -

Brown hy P sic 1 3 -

Peterson 0 Ch~em 20j 2 0

Name Sex Dept. Age Class 

Result Result after the
after the first search
iewond
Searqtt

Figure 2.2 An Example Search Operation Using
Associative Memory. (Foster, 1976)

• - - "* -,
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Imagine accessing an unsorted "student file" and

requesting the names of all students between 21 and 31

years of age. If this were done using RAM it would require

an access to every entry within the file. Figure 2.2

depicts the same search but utilizing associative memory.

The masking register is set such that only the age field

will be involved in the comparison process. The first age,

21, was latched into the comparand register, memory

accessed and results appear in the indicator register.

(The comparison logic, avoided here for simplicity, will be

described later.) After transferring this data to a

temporary register the same process is performed using the

second age, 31. Finally, the temporary and indicator

registers are "anded" to provide the requested information.

Note that only two associative memory accesses are required

for the entire search operation.

2.2.2 Organizations

Associative memories can be classified into four

categories based upon their organization: fully parallel,

bit-serial, word-serial and block oriented. Some

extensions or modifications to these basic organizations,

however, have been implemented or proposed. The primary

emphasis here will be devoted to the fully parallel and

bit-serial organizations.

The word-serial system dces not utilize parallel wcrd

| "
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operations. Considering an associative memory as a "black

box" device, this organization qualifies as an associative

memory due to its high speed. This device essentially

represents a hardware implementation of a simple program

loop used for a linear search. (Yau and Fung, 1977) The

organization is efficient as it requires only a single

instruction to conduct a comparative search and because

data rates of circulating memories are much higher than

those of RAM.

Block oriented organizations are utilized for

applications such as information storage and retrieval with

regard to mass storage. Proposals of this type involve the

use of high-speed drums or disks with associated

"logic-per-track" devices (Yau and Fung, 1977).

In a fully parallel organization the comparison

process is performed in parallel by word and by bit. All

bit-slices not masked are simultaneously involved in the

operation. Logically complex word match tags are used.

This organization is shown in Figure 2.3 (a).

Figure 2.3(b) depicts the bit-serial organization.

Here only one bit-slice (not masked) at a time is involved

in the comparison. The figure is misleading in that it

shows the bit-parallel organization to be seemingly less

complex than the bit-serial organization. Actually, the

word match networks in (a) contain much more logic than the

word logic blocks in (b). Often referred to as a

compromise between the fully parallel and word-serial

J
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organizations, the bit-serial organization is implemented

in most existing associative array processors (Foster,

1976).

Interrogating bit drives

11 12 n Word-match tagj
network I

21 :2 2,, ['Word-rnatch tag l

n o(a) Bit-par&ae! organization

- I m 2 Word-match ta&
:-I network m

Bit column S-!Ct lcgic Cont 
=

OO. ,,-

I nterrogating bit drives "

21 22 Word

logc (b) Bit-serial organization

* + ...@@ ,'c.'

y2 oLn d
- -i logicn

Output circuit ALU

Figure 2.3 Associative Memcry Crganizations
(Foster, 1976)
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2.2.3 An Implementation

In this section an example implementation of an

associative memory is presented. By redrawing the basic

model of Figure 2.1 with regard to function, the block

diagram of Figure 2.4 results. We now examine each block

in turn.

The comparand, mask and output registers need be of

the same size as the word size in the memory array. The

-3°

Figure 2.4 A Functional Diagram of an
Associative Memory

-. .p ~ '~* . - .
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comparand and masking registers are connected such that

their "anded" value enters the memory array, thus, masking

occurs. Additionally, to insure that masked bit-slices do

not affect the result the masking register is connected to

the match logic as well. (For example, to preclude matches

of a comparand "0" when the mask is "0". See match logic

which follows.) Upon completion of an operation data may

be latched into the output register as directed by the

selection logic and match results.

Briefly, the selection logic may consist of

multiplexers, encoders, decoders and other logic devices.

This logic allows for external accessing and loading of the

memory array. It is important to realize that actually

getting the desired data from an associative memory is not

any faster than RAM. (Recall that the associative memory

advantage is in comparison and search operations.)

The memory array is composed of an array of basic

memory cells, one of which is shown in Figure 2.5. Each

cell is capable of holding one bit of information.

We.te IRead Select

Data

to
1-bit

i-bi t output•

storage device

Figure 2.5 Basic Memory Cell

. . . . - . . . . - .u.xc. - - -
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Input bj
Register

Mask mj

*Regis t e

kj

Associative Aij

Memory
Cell

E- Aij + kj

Indicator
lj Register

Figure 2.6 Structure of a 1-bit Match Logic

The match logic is shown in Figure 2.6 for a one bit,

one word memory implementation. The output of the match

logic feeds the indicator (or match) register. The

indicator register must therefore be of length equal to the

number of words in the memory array. A result of one in

the indicator register would indicate a match of the

associated word in memory. A zero result indicates no

match.

For implementaticns of larger associative memcries,

D 
.1
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the match logic is much more complicated than depicted in

Figure 2.6. For example, a large memory was indicated in

Figure 2.2, the "student file" illustration. The match

logic required here must be able to perform the comparisons

of "less than" and "greater than" as well as equality.

2.3 Associative Array Processors

In this section a few examples of existing

associative array processors are reported. The intent is

to show that these processors actually exist and could be

or have been used in computer vision applications. The

information presented has been extracted from (Foster,

1976) and (Yau and Fung, 1977).

The Parallel Element Processing Ensemble (PEPE)

utilizes an almost fully parallel associative memory

organization. "Almost" refers to the fact that rather than

all bit-slices being compared simultaneously, only a group

of the unmasked bit-slices are compared at the same time.

PEPE was designed as a special-purpose computer to perform

real time radar tracking in an antiballistic missile

environment. Other than having a different sensor system

(radar instead of visible light) PEPE closely resembles a

computer vision system. Many of the data operations

conducted on radar images by PEPE mirror computer vision

operations.

The STARAN, develcped by Goodyear Aerospace, utilizes

F.'

. . . ..
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the bit-serial associative memory organization. STARAN -

possesses high-speed I/O capabilities and can interface

easily with conventional computers. Termed a general

purpose associative array processor, some of STARAN's many

practical applications have been matrix computations, air

traffic control, signal processing and computer vision.

The OMEN computers, developed by Sanders Associates,

possess the bit-serial organization. The associative

memory array of 64 words by 16 bits is augmented by

processing elements (PE). The PE's are connected such that

simultaneous arithmetic operations can be performed on

several bit-slices at one time.

The Associative Linear Array Processor (ALAP) is an

exciting development because it has been developed on a

single LSI wafer. Another recent development by Honeywell

is the Extended Content Addressed Memory System (ECAM).

Honeywell has developed a superchip technique which allows

for the production of associative memory arrays up to the

billion-bit range. The potential of these two systems for

computer vision applications is enormous.

I!

p..
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Chapter 3 CELLULAR LOGIC ARRAYS

3.1 Introduction

In the previous chapter, we discussed associative

array processing and mentioned applications to computer

vision. Each computer system reviewed utilized associative

memory. However, each system varied in its architecture.

In this chapter we will review the literature regarding a

specific computer architecture: cellular logic array

computers. The references listed in the Bibliography, when

combined, fairly represent the state of the art with regard

to computer vision. Based upon these sources, it seems

apparent that the most popular and promising computer

architecture for computer vision is a cellular logic

structure.

This structure is not a new idea. S. M. Unger

suggested using a two-dimensional array of processing

elements as a natural computer architecture for image

processing and recognition over 25 years ago. (Rosenfeld,

1983) In Section 3.2 we review the principles of image

processing using the cellular logic structure. Emphasis is

on the two-dimensional processor array where each processor

is responsible for one element of the image (a pixel) and

. . . . . . , . - -- - . . .. . . , , , . . . . .. . . ... . . , I
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neighboring processors are responsible for neighboring

pixels. By using hardwired communications between

neighboring processors, local operations can be performed

or local features can be detected in a highly parallel

manner. The section basically summarizes the concepts

presented in a special computer vision issue of Computer

(January, 1983) In particular, the article by Azriel

Rosenfeld is summarized in detail.

In the last section of this chapter, we review

current implementations of cellular logic processing. In

this review, the diversity of the basic cellular array

architecture is most interesting. Recent IC technology has

had profound effects in these implementations and has

expanded the number of practical applications for cellular

arrays with regard to computer vision. (Preston, 1983)

3.2 Cellular Arrays

A cellular array is a two-dimensional array of

processors. Each processor can communicate directly with

its neighbors in the array as shown in Figure 3.1. For

simplicity, the figure only depicts connections between

each processor and its four vertical and horizontal

neighbors. (Note that "border" processors have less than

four neighbors.) We assume that each processor is capable

of receiving distinguishable messages from its neighbors

and that it can send different messages to each neighbor.

-j
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off.

So*

Figure 3.1 A Rectangular, Two-Dimensional
Cellular Array

For image processing, each cell (processor) gets the

value of an element of the picture (a pixel) as input. If

the array is smaller than the image, the image may be

processed a "block" at a time with special consideration

given to block boundaries. Alternatively, providing each

cell has the memory capability, each cell could receive a

block of pixels as input. It should be noted, however,

that all cellular arrays constructed to date possess very

little memory. Therefore, we only consider the single

pixel input alternative.

The principle advantage of this arrangement is that
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the processors can operate in parallel within their

neighborhood. Local operations can be performed on the

entire image in an amount of time independent of image

size. Example basic operations and algorithms are

presented in Section 3.2.2.

Cellular logic arrays need not be rectangular in form

as shown in Figure 3.1. In fact, two-dimensional arrays

are quite expensive and the largest in production are only

about 100 x 100 in size. Due to this, other organizations

have been proposed.

3.2.1 Organizations

Other than the two-dimensional cellular array

discussed previously, there are structured cellular arrays

which require much less hardware but at a cost of decreased

performance. One dimensional cellular arrays, or "cellular

strings," have been used to process two-dimensional images

by scanning row-by-row and operating in parallel on each

row. Local operations can be performed by storing several

rows to obtain the needed values of neighbors. This

procedure requires 0(n) time for an n x n image at a cost

of O(n) which is attractive compared to the O(n2

hardware required by the two-dimensional organization.

Note that both of these organizations can be easily laid

out on a chip as no connections need cross.

Another alternative organization is the cellular

UD
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pyramid. Here each cell is connected to two or more

"brothers" in its own string, a "father" in the string

above, and to its "sons" in the string below. For a binary

tree this results in a cellular triangle as shown in Figure

3.2. Quadtree and Octree decompositions have also been

implemented. These structures use less hardware than the

two-dimensional structure, but can perform "counting"

operations in O(log n) steps. Due to connections needed

for local operations, however, chip layout poses some

problems. These structures have been used effectively for

shape analysis and pattern recognition applications.

(Chandhuri, 1985)

Figure 3.2 A Cellular Triangle

I.!
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A final organization is termed cellular graphs. -In

this structure cells are considered "nodes" of a graph. We

allow the "arcs" which connect the nodes to be arbitrary.

This type of "reconfigurable" structure has proved to be

useful in segmentation operations. The organization is

most effective when it has the ability to modify itself

(during processing based on the input) from the initial

configuration. This structure would be best used for image

processing at the region level.

3.2.2 Operations

As mentioned before, the principal advantage of using

cellular arrays is in local operations where each processor

can operate in parallel. At this point, we consider

operations using the rectangular, two-dimensional cellular

logic array. As a very simple example, suppose we wanted

to average each pixel with its neighbors (a "smoothing"

operation). Ignoring the special treatment required for

border pixels, this could be accomplished by having each

processor, in parallel, execute the following sequence of

instructions:

1. Add own value into a previously initialized

register.

2. Read and add all neighbor values to register.

3. Normalize. (Divide by total number of pixels inI..
r ,.

~ ~ ::.j.~:.:~- - - ]
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neighborhood.)

4. Replace own value by register contents.

Given a repertoire of such instruction sequences, a wide

variety of local image operations can be performed. Each

cell could store these as microprograms or the instructions

could be "broadcast" to each cell as required.

In contrast, consider a conventional computer, having

only a single processor, attempting the same type of

operation. Here the averaging process can proceed only one

pixel at a time. Thus, the time required is directly

proportional to the image size. For an "n x n" image,

using a rectangular cellular array increases the amount of

hardware required by a factor of n2  but also decreases

the time required by a similar factor.

A wide variety of image processing algorithms have

been developed for cellular arrays. A representative set

of such algorithms are briefly described here:

(1) Local Operations: These are operations like the

averaging example previously described. The local image

property depends upon only the input values of a small set

of the pixel's neighbors (and possibly the value of the

pixel itself.) Cellular arrays can compute local

properties in parallel where the amount of time required is

independent of the image size. Local properties are widely

used in image processing for smoothing, deblurring, edge

detection, texture analysis, etc.
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(2) Value Counting (histogramming): Here we desire

to count the number of times a given value occurs in an

image. For example, we can shift and sum these counts left

in each row and store the results in the leftmost cells.

Next, we shift the sums in the leftmost cells upward to a

final summation in the uppermost left cell. The total time

is proportional to the width and height of the image. This

method can be used to construct the grey-level histogram of

an image in O(n) time.

(3) Moments and Transforms: The moment value of an

image or the coefficients of the Fourier (or other)

transform may be computed using cellular arrays. Here we

multiply the image pixelwise by the appropriate basis

matrix and sum the results (Fourier Transform). Each

summing step and "broadcasting" of basis matrix can be

accomplished in O(n) time. The multiplication is done in a

single parallel step (Rosenfeld, 1983).

(4) Connected Components: Given an array of O's and

l's, we can define local "shrinking" or "expanding"

operations. In the former, we collapse each component of

l's to a smaller size and in the latter the operation is

reversed. Time, of course, is dependent upon the component

size and the degree of change required.

(5) Region Properties: Properties of a region such

as its area or perimeter can be easily computed using

cellular arrays. From these properties region shape

features such as compactness, elongation, thickness, etc.

4
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can be determined.

3.3 Cellular Logic Computers

Cellular logic computers, under development since the

1950's, are now in use for image processing in hundreds of

laboratories world-wide. (Preston, 1983) In this section

we will briefly review several of these computers.

According to Preston, cellular logic computers can be

divided into four major architectural types, as follows:

(1) Single-element Subarray Machines: Having only

one processing element, these machines appear to represent

an obsolete architecture. Examples of this type of

architecture are the Cellscan, GLOPR and BIP computers.

These machines were the first successful cellular logic

computers constructed in the 1960's.

(2) Multiple-element Subarray Machines: Computers

of this type are characterized by possessing multiple

processors which operate under the control of a control

processor. Examples of computers having this type of

architecture are the diff3, PHP, PHP II and PICAP Il. The

upper-bound for these systems is on the order of 500

million elements per second and is mainly limited by memory

data rates.

(3) Pipelined Architectures: This type of

architecture involves multiple processors as in (2). Here,
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however, each processing stage feeds the next in a linear

chain of processors. An example of a current pipelined

cellular logic computer is the Cytocomputer. This computer

uses eight pipelined levels in processing input data. An

architecture of this type is fully utilized only when the

number of program steps is equal to the number of

processing elements.

(4) Full-array Processors: This category can be

distinguished from the others by the large number of

processing elements utilized. The processors are tightly

connected to each other and operate in concert. The MPP

contains 128 x 128 processing elements. Other examples of

this architecture, such as the Illiac-IV, STARAN, and

CLIP4, contain a smaller number of processing elements. In

image processing using these architectures, several

significant problems exist. For iterative operations the

"border problem" is severe, yielding large amounts of

overhead. Problems also occur in chip design when many

processors are integrated on a single chip. Specifically,

the number of pins per chip becomes unmanageable as the

number of processing elements is increased.

Preston's conclusion is that despite advances in VLSI

design, the multiple-element subarray processors or

pipelined processors offer the greatest flexibility,

economy, speed and programming advantage compared with the

other architectures. With sub-nanosecond RAM's on the

horizon for use in these machines, he predicts abandonment
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of full-array systems. Some current image analysis

computers having the architectures discussed are summarized

in Table 3.1. (Hwang and Fu, 1983) r

Table 3.1 Summary of Cellular Logic Computers

Machine Architecture Applications

Illiac-IV SIMD, 64 PE's in Landsat images, radar
8x8 mesh signal processing

STARAN SIMD, 256 PE's in Image magnification and
each of 32 arrays convolution, cartography

CLIP4 SIMD, 96x96 PE's Image processing and
feature extraction

MPP SIMD, 128x128 Landsat image processing
PE's

Cytocomputer Pipelined, 88/25 Biomedical image
processor stages processing

GOP Pipelined, 4 Image processing and
arithmetic pattern classification

Systolic Systolic pipeline Image processing, FFT
Processor

PICAP II MIMD/SIMD Image processing,
Computer graphics

FLIP MIMD, 16 General image processing
processors and pattern recognition

ZMOB MIMD, 256 Artificial intelligence
microprocessors and image processing
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Chapter 4 STRUCTURES FOR FEATURE EXTRACTION

4.1 Introduction

In Section 4.2 we present the basic structure of our

Feature Extraction Structure (FES). Using this basic

structure, we then derive two specific structures for the

extraction of two different qualitative features in Section

4.3. In particular, we examine the texture attribute of

"regularity" and the shape attribute of "line trend" as

specific qualitative features. An integrated structure for

simultaneous multiple-feature extraction is discussed in

the final section of this chapter. In Chapter 5 we discuss

applications of these structures. The remainder of this

introduction provides additional background and development

for the FES design.

In the previous two chapters we have reviewed the

concepts of both associative processing and cellular logic

processing. Associative processing possessed the distinct

advantage of speed due to the inherent parallelism of the

associative memory. Speed was the primary advantage

presented for cellular logic processing as well. This was

due to the spatial parallelism of its structure. The

. . . .
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primary cost for this speed, in both cases, was reflected

in the hardware required for implementation. In the 25

years since the conception of both of these ideas, however,

advances in VLSI design have dramatically decreased

hardware costs. This trend is expected to continue, and as

such, it is anticipated that larger associative memories

and sizeable cellular logic structures will be economically

feasible in the foreseeable future.

Cellular logic was also presented as the "natural"

structure for computer vision in Chapter 3. By augmenting

this structure with associative memory it would seem that a

more efficient system for computer vision would be

possible. Several existing associative array processors

were reported in Section 2.3. The major hypothesis of this

thesis is that the style of architecture resulting from the

"marriage" of the concepts of associative and cellular

logic processing is the ideal style of architecture for

computer vision systems.

A comparison of the major implementations (processors

and computers) presented in the last two chapters, yields

only one large-scale implementation which possesses

associative memory and a cellular logic construction.

This, of course, is the STARAN computer system. The

STARAN, however, was not built specifically for computer

vision but rather as a general purpose system to be used

experimentally on a number of practical applications.

Additionally, the STARAN system, which possesses 32 arrays

• : : -. .. . .: -> : .... -. : ..-... . . . .. .... .
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of 256 PE's, is much too massive in size and requires an

inordinant amount of control, to represent an ideal

computer vision system.

It is interesting to note that Preston did not

mention or reference the STARAN system in his article

(Preston, 1983). Recall from Chapter 3 that his conclusion

was that full-array processors may be abandoned due to

border problems, the number of chip pins required, and the

overhead required to process an image. As a result of

Preston's analysis, we have placed special consideration in

the design of our structure to avoid these problems.

In the next section we present a structure capable of

performing picture processing. The output of such a

processor is a quantized measure of a qualitative feature

which may be used for pattern recognition or

classification. The architecture is cellular logic and the

structure uses associative memory. As such, the structure

is small in size and scope compared to STARAN and

specifically designed for computer vision applications.

The problems of such structures, which were presented by

Preston, are solved in the design of our structure.

Similar work in this area has been done. In (Smith,

1983) an image processor which handles 256 pixels

simultaneously is described. Called SCAPE (for Single-Chip

Array-Processing Element), the chip is basically a

variation on the CLIP-4, with bit-serial communication

between chips such that only 24 pins are required for the

.......o'-.,: " "., :..''- .." ..... ...... .o ... j lw o .. ...- .. .. .:., ,-. .-, .-: ., .- ..., ... .- .... •1
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package. In operation, the associative memory logic

selects pixels upon which data transformations may be made.

Additionally, the array structure is programmable. This

chip is one of the most complex yet developed for image

processing tasks, containing up to 140,000 transistors in a

6 millimeter square (Smith, 1983).

In our design, the associative memory is utilized in

a different manner. Rather then using the associative

memory to select pixels for impending operations, we will

use the memory for storing characteristics of the

preprocessed image. In the process of feature extraction

we are able to access, in parallel, these characteristics

by content. Additionally, our design is much simpler since

only feature extraction is required rather than complete

image processing.

4.2 A General Structure

In this section we present the basic structure for

FES. (We assume FES will fit on a chip the size of SCAPE

since FES is much less complicated as far as hardware.) A

block diagram of the FES chip is depicted in Figure 4.1.

Easily seen from the figure are the facts that FES consists

basically of a rectangular cellular logic array and

associative memory. We now describe each component of FES.
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CONTROLLER OUTPUT OUTPUT

INPUT 
LOGICO
C E L L LA R A C AT I V E

Figure 4.1 Block Diagram of the FES

The input consists of six-bit grey-level values. We

have chosen this size because it is common in other

implementations. As discussed earlier, in Chapter , we

assume the sensing and digitization has been accomplished

F::elsewhere. The input is received in a serial manner for

reasons mentioned later.

The Controller is the programmable brain 
of the chip.

It controls the timing of operations 
conducted in the other

components. Instructions are "broadcast" to the cells of

the array from the controller. These instructions will

mind that Figure 4.1 is a model of a generalized FES. It

is not adapted to extract a specific qualitative feature.

The Output Logic block will usually 
contain a

microprocessor. (In implementation this may be the same

processor as in the Controller.) Its purpose is to

accumulate and output the result 
of the operations 

[

conducted on the chip as a feature. Like the controller, 
'

the internal structure of this element 
depends upon the

I

R SINPUTLOGICMEMOI
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specific feature required.

The Associative Memory Control contains the

comparand, mask and indicator registers, as well as the

majority of the match logic required for the chip to

possess an operative associative memory. Word size and

other logic considerations will vary in this block

dependent upon the specific feature. The associative

memory cells, themselves, are colocated with the cellular

logic cells.

The Cellular Logic Array is redrawn in more detail in

Figure 4.2. Here we see the rectangular architecture of

FES. The array is 20 x 20 cells in size. The interior 16

x 16 cells are bordered to indicate that these cells

possess an associative memory element. The pictorial input

is thus 20 x 20, but only 16 x 16 cells partake in image

processing by the FES. The border cells then simply

represent digitally that area of the image and provide the

information to neighbors within the interior as required.

We have selected this size for the FES because we

feel that implementation on a single chip is possible.

This is based upon the success of implementing the SCAPE

(of comparable size) on a single chip, as was reported

earlier.

The purpose of the border of cells may not be

intuitively obvious. The 144 cells comprising the border

represent considerable overhead. In this case, however, we

feel the benefits incurred outweigh the additional cost in

-4•
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proxmit. Int. cell onI
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Figure 4.2 The Cellular Logic Array in FES.
Interconnections are represented by
proximity. Interior cells contain
associative memory elements.

hardware. Operationally, the border allows for accurate

data processing at the edges of the 16 x 16 array. Most

computer vision preprocessing operations, such as those

described in Chapter 3, require "pixelwise" computations

within a neighborhood of pixels. Our structure, therefore,

will allow for up to 5 x 5 sized neighborhood operations.

If we want to "stack" FES's so that larger pictures may be

processed, we discover that extensive interconnections are

not required between chips. This overlapping essentially

reduces the required pin count of the chip by at least 64.

The pin count is also reduced due to the fact that input is
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serial. Thus, the pin count of this chip is not

unmanageable. Finally, a border cell is much more simple

than an interior cell. It has no processing function and

contains no associative memory element. Thus, this

overhead is not as significant as it appears.

A block diagram of an interior cell of the array is

depicted in Figure 4.3. Valid input is latched into the

input register, an internal PE register, as instructed by

the Controller. The processing element is then able to

perform arithmetic/logical operations on this data and

input data from neighboring cells as directed by the chip

Controller. The particular processed data (dependent on

feature) is then stored in the associative memory element.

CONTROL PROCESSING ASSOCIATIVE

EMENTN

INPUT -putReg

Figure 4.3 An Interior Cell in the FES Cellular
Logic Array

The FES chip incurs some overhead due to the serial

loading of its cells. But, the chip has a manageable pin

count and when implemented together with other chips no

border problems are manifested. At this point, the

"general structure" may seem ambiguous or unclear. This is

due to the immense flexibility incorporated into the
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structure. In the next section we will examine specific

structures for specific feature extraction in order to

illustrate the power of this structure.

4.3 Specific Structures

In this section we adapt the general structure of FES

to a particular purpose. This will be accomplished in some

detail for two features: the texture attribute of

"zegularity" and the shape attribute of "line trend". Each

section ends with a summary of other features which may be

extracted using similarly adapted FES's. Example

applications of these specific structures will be covered

in Chapter 5.

4.3.1 "Texture" Structures

Despite the tremendous amount of research that has

been conducted, the field of texture analysis in computer

vision is a highly controversial and ill-defined subject.

According to Levine: "At present there does not exist a

generally accepted model for texture" (Levine, 1985). And

"the notion of texture admits to no rigid description"

(Ballard and Brown, 1982). In this thesis we use the word

"texture" rather loosely, sometimes in reference to a

particular textural feature, and at other times to

represent the sum of all texture attributes.

a,
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Much work has been done in qualitative and quantitive

analysis of texture. "Texture can be qualitatively

evaluated as having one or more of the properties of

fineness, coarseness, smoothness, granulation, randomness,

lineation, or being mottled, irregular, or hummocky."

(Haralick, 1979). Levine discusses how to quantify these

concepts mathematically. The analysis of texture from this

viewpoint is sketched in Figure 4.4, which has been

included to emphasize the complexity of this field.

TXRE)

Collection

Regions

AttributesI  Relationships

Grey-level Geometric Primitive Spatial
Attributes Attribute Region Organization

. Tv es

Averg Others Sal Functional

Extremum Type atistica
Ftq

Figure 4.4 A Texture Paradigm

...........................................
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Levine reformulates all texture analysis into just

two groups of analysis techniques: statistical and

structural. we will not discuss the structural techniques

here, however, a good review of most existing computational

approaches to textural analysis may be found in (Haralick,

1979).

Input Scalar T zTexture
Image Vector Attribute

Feature Array Data
Detection Aggregation

Figure 4.5 The Process of Statistical Texture Analysis

In Figure 4.5 we depict the process of statistical

textural analysis by a block diagram. Depending upon the

specific technique, transformation T1 measures a

statistical feature. If the output of T1 is not

scalar, the data is usually compressed via transformation

T2. In this manner a texture attribute describing the

texture of the input image results.

Statistical techniques of texture analysis may be

further divided into three groups (Levine, 1985):

(1) Texture as Spatial Frequency: In this technique

the textural attribute of "regularity" is exploited.

Popular indicators of this attribute are the

autocorrelation function and the two-dimensional Fourier

°'" . .
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transform.

(2) Second-Order Statistics: Extremely complex

mathematically, these techniques yield good results for the

analysis of texture on a regional level. These methods are

primarily an extension of first-order statistics which we

consider next.

(3) Simple Texture Methods: We will confine further

discussion of texture analysis to these techniques. The

idea in these techniques is to compute a histogram of the

input in transformation T1 and in transformation T

to compute a corresponding textural attribute. (Refer to

Figure 4.5) These attributes are usually the so-called

"central moments" of the histogram: mean, variance,

skewness and kurtosis. The mean and variance are

indicators of the regularity of the input image. Symmetry

and peakedness are indicated by skewness and kurtosis

respectively.

There are several popular variations in the

construction of the histogram. In a first method the

grey-level value of each pixel is used to make the

histogram. In another method, rather than these values,

the histogram is formed by some local grey-level property.

For example, the sum of the grey-level differences within a

neighborhood is often used. In a third method grey-level

"run-lengths", where run-lengths indicate areas of similar

grey-level values, are used to compute the histogram. In a

final method a property called local rank correlation is
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computed to be used in histogramming. Fairly complicated,

this method may be found in (Harwood, 1985).

Having paused for this brief review of the methods of

texture analysis, we now proceed to adapt the FES for

textural feature extraction. Recall from Figure 4.5 that

two transformations are required for the extraction of a

textural attribute (or feature). If we design a specific

FES such that the cellular array and associative memory

logic can accomplish the transformation TI, and the

output logic perform transformation T2 , we will have a

specific FES for texture.

For an example design, we use the first variation

histogramming method mentioned previously. Figure 4.6

depicts a specific FES which will accomplish the

transformations required.

Once the input image has been serially entered into

the array, the next step is to latch the grey-level values

of each pixel into their respective associative memory

cells. Assuming that the grey-levels are quantized into 64

discrete levels, the associative memory will be six bits

wide.

The histogram is then computed via the associative

memory logic. In this case the comparand is simply a

six-bit counter and the masking register is not required.

The match logic compares the value of the comparand with

the values of all the associative memory cells in parallel.

The l's which result from this comparison in the indicator

5 ",.j "' t ' t " "' " " ' - " " " """ - -- " " .' ' J ' " t 2 P .A
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register signify matches. Since the pixel array is

16 x 16 the indicator register must be 256 bits.

The indicator register is hardwired to the adder of

the Output Logic. The adder could consist of a carry-save

adder tree structure with a carry-propagate adder (Kuck,

1978). Using a 7:3 carry-save adder size this addition

requires seven adder stages as shown in Figure 4.7. (Other

"adder trees" are possible and, indeed, other adding

methods.)

S2
I

n
d3

C

a
t S
0

s

e
g

SS

t Total Hardware:

r 63 Carry-Save Adders
r 1 Carry-Propagate Adder

F--

pp

Figure 4.7 The Output Logic "Adder"
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The Output Logic microprocessor uses this data to

produce, when all grey-level values have been matched and

summed, a texture attribute such as the mean, variance,

skewness, or kurtosis. Each of these attributes can be

computed by "traversing" the histogram once as discussed

above. For a more complete explanation of some of the

mathematics involved see Section 5.2 wherein this "texture

structure" is used in an application. For general

references, both (Ballard and Brown, 1982) and (Levine,

1985) cover these mathematics in detail.

The controller in Figure 4.6 is programmed to control

the operations detailed above. If we assume that the

associative memory search, some part of the adder stages,

and steps in attribute formulation operations can be made

to proceed in uniform periods of time, part of the process

can be pipelined for greater speed. In summary, the entire

process would follow these steps:

1. Input Digital Signals

2. Latch grey-level values into associative memory

3. Conduct associative search: counter = 0

4. Sum Indicator Register

5. Compute and sum "partial" texture attribute

6. Repeat Steps 3 - 5 for counter = 1 to 63

7. Output texture attribute

Steps 3 - 5 may be pipelined for efficient computation.

- .. . . . .n jk°7 2. .
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The other simple texture analysis techniques

mentioned earlier could be accomplished using this same

structure with slight programming modifications to the

controller. Recall that instead of the grey-levels

themselves these variations required pixel-processing prior

to histogramming. It takes little imagination to see that

additional instructions could be broadcast to the cells of

the array between steps 3 and 4. These instructions would

allow for the computation of a local grey-level property or

rank correlation as described previously. In step 5, these

values would then be latched into the associative memory

element for histogramming and final attribute processing.

We have not attempted to derive an adaptation of the

FES which will accomplish the computations necessary for

the spatial frequency method or the second-order statistics

method of statistical texture analysis techniques. This is

beyond the scope of this paper. However, it seems entirely

possible that each can be implemented in a structure

similar to Figure 4.6. The only real significant

difference in these methods from the simple texture

analysis method is that of computational complexity. It

should be pointed out, however, that "comparison studies

have indicated that the performance of the spatial

frequency approach [ Fourier Transform ] is poorer than

that of other methods." (Levine, 1985).
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4.3.2 "Shape" Structures

"Shape" analysis is as large and nebulous a subject

as that of texture. Many theories of shape description and

recognition exist, where each attempts to explain some
K -d

specific aspect of the problem. The general approach is to

describe a given shape in terms of simple shape features.

A characteristic of the method is whether or not the

original shape can be reconstructed from the descriptors.

Popular approaches may then be categorized as

information-preserving or non-information-preserving based

upon this characteristic. A further distinction in shape

analysis lies in the type of method employed. For example,

there exist spatial domain approaches and scalar transform

techniques (Levine, 1985).

In this section we will restrict discussion of shape

analysis to the identification and extraction of simple

shape features. Exactly what constitutes a set of simple

shape features depends on the method used. In our

discussion we will simply think of a shape feature as an

indicator of a shape property. Virtually any adjective

used to describe a shape may be such an indicator. Some

examples may be perimeter, area, horizontalness,

verticalness, closure, curvature, eccentricity,

compactness, concavity, etc. Nearly all of these

indicators require preprocessing of the input image for

detection. The most common preprocessing steps are

4 s
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highlighting edges, threshholding, and boundary

determination.

To best illustrate how the FES may be utilized in

extracting a shape feature we consider an example. Suppose

the feature we desire is that of line trend, where we

define line trend as the sum of the measures of

horizontalness and verticalness. Specifically, we would

like to characterize the input image by its line trend. A

specific FES which will accomplish this operation is shown

in Figure 4.8.

Once the grey-level values have been entered into the

array, we perform a neighborhood operation. This operation

can be thought of as a masking operation where a mask which

highlights vertical or horizontal lines is applied to the

entire array (Figure 4.9). Each cell of the array performs

the operation such that the entire process is done in

parallel. Example masking operations are shown in Section

5.2.3. Further information on masks for edge enhancement

may be found in (Iliffe, 1984), (Wiejak, 1985), and

(Chaudhuri, 1983).

Another neighborhood operation, that of thresholding,

is now applied to the data in the array. For simple

thresholding each cell compares its value with a value

broadcast from the controller. If the cell's value is

lower, then a 0 is stored within the cell, otherwise, a 1

is stored. We now have a "binary" image stored in the

array. See (Rosenfeld and Kak, Vol. 2, 1982) for more
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X 0 Y X X X

X 0 Y 0 0 0

X 0 Y Y Y Y

(a) (b)

Figure 4.9 Masks for Highlighting Edges
(a) Vertical edges. (b) Horizontal edges.
Normally the variables X and Y are equal
but of opposite sign. Emphasis determined
by magnitudes.

information on thresholding. This image reflects either

horizontal or vertical edges of the input image depending

upon which mask was used.

we now compare the binary value of each pixel with

its neighbors . We arbitrarily define a pixel to be in a

horizontal line if it has a value of 1 and both its east

and west neighbors have values of 1 as well. Likewise, a

pixel is in a vertical line if it contains a 1 and both its

north and south neighbors contain l's. A 0 is stored in

the associative memory otherwise.

If all we require is this line trend information we

can restrict the size of the associative memory to only

two-bits wide. Once the neighborhood operations have been

completed for horizontal lines we store a 1 in the first

bit position of the associative memory cell if its

associated pixel was in a horizontal line. During this

same time, we can (sequentially within each step) perform

"5.- 5 .. - - -.. -- - -. -. . -. ,.. ~ . ,
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the same operations for vertical lines and store a I in the

second bit position of the associative memory if the pixel

was in a vertical line.

We can now initiate an associative memory search for

horizontal or vertical aspects of the input image. The

Output Logic adder sums the number of occurrences and the

microprocessor computes the line trend attribute as a

scalar representing horizontalness, verticalness, or any

combination of the two such as their ratio. A more

complete visualization of this process may be found in

Section 5.3 wherein we apply this structure as an aid to

image orientation. If the ratio of horizontal to vertical

measures was required, feature extraction would require the

following steps:

1. Input Digital Signals

2. Highlight horizontal/vertical lines via masking

3. Form Binary Images via thresholding

4. Compare pixel value with neighbors (E and W for

horizontal, N and S for vertical). Store line

"membership" in associative memory

5. Associative memory search for horizontal lines

6. Sum Indicator Register

7. Repeat 5 - 6 for vertical lines

8. Divide sums and output ratio



56

By adapting the FES similarly, other shape features

can be extracted. If the desired feature were perimeter, a

value of 1 could be stored in the associative memory if the

pixel was a part of the border of the object in the input

image. These l's could then be added, via associative

search and adder steps, to output a measure of the

perimeter based upon pixel size. In a similar manner we

could store a 1 in the associative memory if a pixel is in

the interior or boundary of an object. Summing this

characteristic would lead to a measure of the area of an

object in the input image. These computational steps,

simply described here, are non-trivial local operations.

See (Rosenfeld and Kak, Vol 1, 1982) for more information

on neighborhood operations and algorithms for contouring

(boundary determination).

For other FES structures which would efficiently

produce other shape features (some of which were mentioned

previously) all that is required is a decomposition of the

feature into a set of characteristics which can be computed

by neighborhood operations.

4.4 Multi-Feature Structures

In examining the specific structures presented for

texture and shape, Figure 4.6 and Figure 4.8, the reader

shculd notice that the only differences which exist are in

*ne width of the associative memory and in the components

-' .. . *2. . . " . , . . . - . .* ' . - -v . - " , *. "V --- . . - . .. . . - .
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present in the Associative Memory Control. In operation,I "of course, there are many differences in the amount and

type of operations performed in the cellular array.

Therefore, Controller programming is feature specific.

Also, note that the data stored in the associative memory

differs as to what characteristic it represents. Levine

considers both shape and texture attributes to be parts of

a greater image processing concept of image segmentation.

(Levine, 1985) As such, the fact that the resulting

specific structures are similar should not be surprising.

In summary, by modifying FES, it is possible to

produce a structure which is capable of extracting a simple

feature. If this is not an exciting development in itself,

imagine an adapted FES capable of extracting a small set of

combined textural and shape type features. We can

characterize the necessary changes in FES structure. This

would require a larger-width associative memory, perhaps

divided into fields for each feature. The Controller

programming would need to be complicated and efficient.

The output logic would need be more complicated so that it

could either serially or in parallel (by vectors) process

and output the attributes. A multi-feature extracting

structure of this type would seem to possess tremendous

potential in computer vision.

..
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Chapter 5 APPLICATIONS

5.1 Introduction

From a casual survey of computer vision literature

(See Bibliography) it is evident that a tremendous amount

of successful research has been accomplished with regard to

computer enhancement of pictorial information. The need

for such enhancement stems primarily from the physical

inability to receive high enough quality input via

receptors. For example, the input may contain noise or may

not be in focus. In Section 5.2, an aid to focusing will

be developed by an application of the specific texture

structure (Figure 4.6).

The second major application, presented in Section

5.3, will be an application of the line trend structure

(Figure 4.8) which was also developed in Chapter 4.

Imagine, for example, a remote sensing device of some type

which observes a conveyor belt carrying automotive parts.

Further, suppose this device is part of a system

responsible for identifying and counting these parts for

inventory purposes. Identification is accomplished

ultimately by template matching of the input image to a

library of part images stored in memory. By using an
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implementation of the line trend structure to automatically

control rotation of the sensing device, the part image

could be properly oriented such that the process of

matching would be easier.

In Section 5.4 additional applications are briefly

discussed for the general structure developed in this

Thesis. By no means a complete listing of possible

applications, this section serves to emphasize the

versatility and power of an associative preprocessing

structure for qualitative feature extraction.

5.2 Focusing by Texture Analysis

In photography, focusing is extremely important.

This industry has placed much time, effort, and expense

into designing systems which will focus automatically. As

a result, there exist slide projectors which focus

automatically based upon maximizing the reflected light

intensity received from the projection. There are cameras

and video equipment which accomplish the focus process via

an acoustic system which determines object range. Other,

more sophisticated methods exist or are in the research

stage, but nearly all of these systems require external

apparatus such as sound or light sensors. It should be

possible to develop a system which can focus based only

upon the pictorial input.

A new product on the market, "from the mind of
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Minolta", is a line of cameras (The MAXXUM 7000 and 9000)

which possess a SLR Autofocus feature capable of focusing

based only on input data. The system incorporates twin

separator lenses which project dual images on CCD sensors.

A microcomputer compares these signals with a reference

signal thus providing controls for the lens movement. When

these signals are "in phase" the picture is in focus. The

system is composed of optical, electrical, and mechanical

components under the direction of a main CPU. The other IC

components include a CCD sensor, autofocus interface IC,

ROM ICs on each lens, and autofocus CPU, which total to

over 150,000 transistors. The controlled four-speed

micromotor allows for focusing of the lenses at a rate

substantiating Minolta's claim that "only the human eye

focuses faster." (Information taken from Minolta's MAXXUM

7000 and MAXXUM 9000 advertising brochures.)

Despite Minolta's success, their system seems far too

complex. In this Section we will use the texture structure

and first-order statistical method of analysis to construct

a focusing system which can focus using only the input

data.

5.2.1 Development

In order to focus based upon the input, a parameter

of the input which changes with a change in focus must be

developed. Consider the digitized input "scene" in Figure
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5.1. Here the values represent a quantized level from 0 to

63 of the light intensity received on the sensors via an

A/D conversion. The scene depicts a rather bright, small

square block on a dark background.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 50 50 0 0 0 0 0 0 0
0 0 0 0 0 0 0 50 50 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.1 A 16 X 16 Pixel "Small Block"

In Figure 5.2 the same "picture", but not in focus,

is displayed. Note that the values have been effectively

"smoothed." Smoothing evokes an analogy to physically

changing the texture of a surface. Smoothing here does

make the texture of a pictorial input less rough. As such

we consider a first-order statistical approach to the

textural changes that occur in the pictorial information in

the focusing process. If the data from these pictures are

placed into histograms an effect of this smoothing is

apparent, as shown in Figure 5.3.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 00
0 0 0 0 0 0 6 11 11 6 0 0 0 0 0 0
0 0 0 0 0 1 11 20 20 11 1 0 0 0 0 0
0 0 0 0 0 1 11 20 20 11 1 0 0 0 0 0
0 0 0 0 0 0 6 11 11 6 0 0 0 0 0 0
0 0 0 0 0 0 0 1 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.2 Unfocused 16 X 16 Pixel "Small Block"

HISTOGRAMS

__- . . ...- FIG 1 DATA
NUMBE . FIG 2 DATA

OF

PIXEL NTENSITY

Figure 5.3 Two Histograms (from the data in Figure

5.1 and Figure 5.2)

.. -.* - -. -.. - . - . . . . . .
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Note that in each picture the sum of the individual

intensity values is the same. In this case we have a

constant "power level" of 200. Therefore, as can be easily

verified, averaging the histogram would not provide the

desired parameter with which focusing could be

accomplished. Additionally, it is seen that the tendency

is for the bright areas of the picture to darken and the

dark areas to brighten as the picture is defocused. At

some defocused point it seems likely that the histogram

will converge with all pixels having the same value equal

to the average power.

The obvious difference between the two histograms is

that of distribution of intensities. As such the

statistical Gaussian measure of standard deviation would

seem promising. Recall that the standard deviation is the

square root of the variance which was shown to be a texture

analysis tool in Chapter 4. Define the mean MN and the

standard deviation SD by:

b

MN (i/n2 )EI*H(I)
a

b2
SD = sqrt[ (1/n 2)EH(I)(I-MN)2

a

where H(I) = Number of pixels with intensity I

I = Pixel intensity

a = Minimum pixel intensity = 0

b = Maximum pixel intensity = 63

n = Size of the n X n picture = 16
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Computations performed on the picture data in Figure

5.1 and Figure 5.2 yield the same mean equal to 0.78 as

expected. The standard deviations differed, being 24.80

for the former and 12.66 for the latter. Thus, we have a

measure for the textural difference between focused and

unfocused representations of the same picture. The

standard deviation seems promising as the parameter by

which to focus.

5.2.2 Algorithms

In this section we assume the standard deviation (SD)

to be a reliable measure of focus as suggested, but not

proven, in the preceeding section. As such, we develop a

simple algorithm, we will call the Single-Step Algorithm

(SSA), by which focusing may be accomplished using the

texture structure detailed in Chapter 4. A flow-chart for

this algorithm is shown in Figure 5.4.

In summary, the algorithm begins by first computing a

standard deviation for the initial input. The lens is then

moved in a positive direction (closer to the sensors) and

the standard deviation is computed for this new input. The

standard deviations are compared. If the second

measurement is higher in value the direction for lens

movement is correct and the algorithm directs repetition of

positive lens movement and associated standard deviation

computation and comparison until a value for the standard
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START

IPUTE

PICTURE
DATA

COMPUTE
SD 1

. . ov.

LENS + LENS

PICTURE PICTURE
DATA DATA
4, .

SD l=SD 2 SD I=SD 2

COMPUTE COMPUTE

YES S? N YE S NO

LES +

( END )

Figure 5.4 Flowchart for the Single-Step Algorithm

deviation is computed, which is less than the previous. At

this point, the lens is moved once in the negative

direction to insure correctness. Finally, the lens is
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moved once in the positive direction and at this point the

picture is in focus. Conversely, had the second

measurement been lower in value than the first, lens

movement in the negative direction would have been

indicated. The algorithm would then proceed iteratively as

before until once again a smaller value was encountered for

the standard deviation, at which time the lens would be

moved once in the positive direction to insure focus.

Table 5.1 Simple Example Data

Lens Position Standard Deviation
(Relative to Focused Position)

-4 1
-3 2
-2 3
-1 4

0 5
1 4
2 3
3 2
4 1

For an extremely simple example, suppose that at

focus a picture input results in a standard deviation of

"5." When the picture is defocused by lens movement in

either direction the resulting standard deviations are

lower, as shown in Table 5.1. Figure 5.5 shows how

focusing would occur for three different initial situations

according to the Single-Step Algorithm applied to this

example.

[..
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Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/SD 2 Comments

1 3 /- Lens +
2 * 4 /3 Lens +
3 * 5 /4 Lens +
4 * 4 /5 Lens -
5 * 5 /4 Lens -
6 * 4 / 5 Lens +
7 * IN FOCUS

(a)

Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/SD 2 Comments

1 * 3 /- Lens +
2 * 2 /3 Lens -
3 * 3 /2 Lens -
4 * 4 /3 Lens -
5 * 5 /4 Lens -

6 4 / 5 Lens +
7 * IN FOCUS

(b)

Lens Position
Step -4 -3 -2 -1 0 1 2 3 4 SD 1/SD 2 Comments

1 * 5/- Lens +
2 * 4 /5 Lens-
3 * 5 /4 Lens-
4 4 /5 Lens +
5 * IN FOCUS

(c)

Figure 5.5 Focusing Example. For the simple example
using the SSA when (a) lens too far from sensor, (b)
lens too close to sensor, and (c) initial position
at focus. Lens position relative to the focused
position.

As mentioned previously, the algorithm presented is

simple and correspondingly inefficient in that it focuses

one lens movement at a time. This is especially apparent

in the example where the algorithm directs four lens

movements to focus a focused picture. The performance of

0-".

r-g
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the algorithm can be expressed by the number of lens

movements required to focus. (This is proportional to the

". time required to focus.)

M=I +D+ 3

where M = number of lens movements

D = number of lens movements from focus

1 movement required to determine direction

3 movements required for convergence

Since the basic operation performed by the algorithm

is to find the maximum value of the standard deviation,

other more efficient algorithms are possible. Some

possible algorithms are:

(1) In-Echelon: Once the correct lens direction has

been determined the algorithm could direct a "jump" of a

specified, constant number of lens positions. Once this

"coarse-tuning" is completed the Single-Step Algorithm

could then "fine tune" the focusing process. Performance

would be improved for pictures well out of focus.

M = 1 + D/S + MOD D + 3

Where S = Jump size

(2) Binary: Once the correct lens direction is

established the algorithm could direct a jump half-way to

the other end of the lens movement capability. The correct
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direction from this point would then be determined. Based

upon this determination, the next jump would either move

the lens half-way back to the initial position or move the

lens another half-distance towards the lens stop position.

The process of (1) determine direction and (2) jump

half-way would continue until convergence at the point of

focus. Obviously, this method requires memory of past lens

movements. An example of this algorithm is given in Figure

5.6. Here the range of lens positions is represented by

the "dots", "X" is the position where the picture is in

focus, and the numbered points indicate current lens

X
.......... ..................... ........

12 *

(a) Direction determined to be to the right. Jump
is 11 positions to right. (Half the distance to
lens stop)

x 2
........ .................. ee.o...

I.* 12 *"

(b) Direction now left. Jump left 5 positions.

X
......... ....................... ........

• 12 *

C) Direction still left. Jump left 3 positions.

X

..................... l.e.........• 12 *

(d) Direction right. Jump 1 position to right.
Picture is now in focus.

Figure 5.6 Operation of the Binary Algorithm

,I
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position. The positions denoted with a "i" must be

maintained in memory. The number of lens movements would

depend upon the current lens position, the direction, and

the focusing range. Performance would then be on the order

of:

[1+ LOG2(Pmax-Pcurrent)

C

L S PCSITION

Figure 5.7 Standard Deviation Versus Focus Position
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(3) Slope: Once the correct lens direction is

established the algorithm would direct a variable length

jump inversely proportional to the magnitude of the

difference between successive standard deviations. Of

course, this would require that the standard deviation

versus input curve be monotone on each side of the peak.

Performance would naturally depend upon this curvature.

For example, three such possible curves are shown in Figure

5.7. This method would work well for curve A since the

slope increases as the point of focus is approached. The

smaller the slope computed the larger would be the jump

directed by the algorithm. For curve B the same, but

opposite, procedure would be used since the slope decreases

to the point of focus. If the curve resembled curve C,

where the slope does not vary, this method would not be

significantly better than the Single-Step Algorithm.

Obviously, these algorithms are much more complex

logically when compared to the Single-Step Algorithm. As

such, implementations would require more controls and

require memory to keep track of where the lens had been.

This means more hardware and greater cost. On the other

hand, the Single-Step Algorithm requires no memory of lens

movement, requires simple controls, requires minimal

hardware, and always converges to focus (providing the

curve resembles those of Figure 5.7).

h!
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5.2.3 Modeling Input I

At this point a structure (Chapter 4) and an

algorithm (Section 5.2.2) have been devised for focusing

pictures in our application. The next step is

verification, but due to the limited resources available to

this researcher, input will be modeled. In (Levine, 1985)

a low-pass operator for the spatial frequency domain is

used to blur or defocus pictures. For different degrees of

blurring, templates of successively larger size, but

equally weighted, were used. This basic idea is used to

develop a method which will produce our required input.

Input, in this case, refers to a series of digital pictures

representing focused and successively blurred images of the

same scene. We desire this input to approximate the real

images that would occur using an imaging system and, as

such, we begin with a basic image model.

Point projection is the fundamental model

traditionally used for the imaging process conducted by our

eye, camera, or other imaging devices. These devices act

like a pin hole camera in that the image results from

projecting scene points onto an image plane. (Ballard and

Brown, 1982.) An schematic representation is shown in

Figure 5.8. In part (a) of this figure is a diagram

depicting the point to be in focus. This occurs since the

imege plane is at a distance from the lens which equals the

focal length f of the lens. In parts (b) and (c) of the

,.
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Image Plane Lens Scene

'4b

(a)

(b)

(c)

Figure 5.8 Point Projection Model. In (a) the
point is in focus, (b) out of focus positive
direction, and (c) out of focus negative
direction.

same figure the point is shown to be equally out of focus.

In the former the distance between image plane and lens is

less than f (termed positive) and in the latter this

distance is greater than f (termed negative).

". . . . . . . .. . . . . . . . . . . .. . . . . . . .. ... a |
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Several assumptions are necessary for the model. We

will assume that fringing effects due to different light

wavelengths are negligible. This will allow us to use an

image which represents blurring in the positive direction

for an image in the negative direction where the absolute

difference between the lens position and focal length is

the same. The light from the scene point is assumed to

impact the image plane in a circular, uniform pattern when

defocused. Other photometric concepts such as variations

in sensor sensitivity to light wavelength, scene geometry,

reflectance, illumination, etc. will be assumed to be

negligible as well. The sensors are assumed to be linear

with respect to light energy.

We now expand the point into an "area" or "patch,"

and retain the assumed behavior. Additionally, we will

ignore the fact that the image is "reversed" when out of

focus in the negative direction as this does not affect

standard deviation calculations. An "area" consists of a

neighborhood of points. By sampling, the scene can be

divided into an array of M x N areas. An array of

photosensitive devices is placed in the image plane such

that each device measures the total "brightness" or "power"

of a single area of the scene. The power incident on the

sensor is converted to an electric signal. The analog

signal is then converted to digital and quantized into a

set of grey level values. The result of this sampling and

quantizing is a digital picture. In our modeling the scene

. . . . .
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is sampled such that a 16 x 16 "pixel" picture is produced

where each "pixel" value may range from 0 to 63 in grey

level values. Resolution can be expressed by the product

of the number of grey levels and the number of pixels in a

picture. (Rosenfeld and Kak, 1982)

I I I I _ _ _

(a) (b)

Figure 5.9 The Image Plane. Here (a) represents
incident light when the scene is in focus and
(b) when the scene is out of focus.

Figure 5.9(a) represents a portion of the image

plane. Each square is a sensor in the sensor array. The

shaded area is that area on which light strikes from one

scene patch when the picture is in focus. If the lens is

moved in either direction, the scene is defocused, and the

shaded area becomes larger as shown in 5.9(b). The total

power of both shaded areas are equal. Therefore, the

center pixel in (b) has a grey level value less than the

center pixel in (a), having "given" some percentage of its

power to neighboring pixels.

• . . . . . . . .. . . -. ., ) , . ... ... , . . . . .. . ,. .. ., . , -a
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Imagine the entire sensor array as above. When

defocused, each pixel's grey level value would be comprised

of a percentage of the value it would have at focus summed

with amounts received from its neighbors. This idea is

used directly to form templates which will be used as

spatial frequency operators. However, these "masks" differ

from the equal valued templates used in (Levine, 1985) in

that they are weighted in a manner such that defocused

images computed using convolution approximates real input.

The mathematical process used is discrete 2-D

convolution. (Rosenfeld and Kak, 1982; Ballard and Brown,

1982) Given two functions f and g, where f represents the

focused picture and g the template or mask, convolution can

be expressed as:

+m +n
C(ij) = g(i-p,j-q)*f(p,q)

p=-m q=-n

Intuitively, g is "rubbed over" f and the value of the

convolution at any displacement is the sum of the product

of the relatively displaced functions f and g.

Twelve different masks were created to produce a wide

range of defocusing as shown in Figure 5.10. Part (a)

shows the focused situation. We ignore the shape

difference between the square pixel and the circle which

represents the incident light. Their areas are the same.

The masks represented for "fuzz factor 0" is then a 1 x I

template with value 1. Convolution of this mask wit the

focused picture yields the same picture.

• - • I ..
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0 00

0 0"0 0 0

(a) Fuzz Factor 0

o 0. 0o . .08
(b) Fuzz Factor 1 or -1 (c) Fuzz Factor 2 or -2

72I11.791i I:1
.. 96

.7L2 .25 54
(d) Fuzz Factor 3 or -3 (e) Fuzz Factor 4 or -4

0 .03 0 02 0

.861 1 1.88 *2 .2 .8 1 .98 .22

.20 1 1 1 23 + 1 11 .17

.03 )6 1.86 6 .981*- 1 .98 2

0 1 f .3j .0'3 00 , .- 0

(f) Fuzz Factor 5 or -5 (g) Fuzz Factor 6 or -6

Figure 5.10 Blurring Templates
(Continued on the next page.)
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.01 .7 .03 .. 9 .12

1 o.8 . 1 11 1 . 1 7

.03 * -.73 .031 - '*,t, .71 1 -2

(h) Fuzz Factor 7 or -7 (i) Fuzz Factor 8 or -8

• o 0 .8 0 .01 0 ,. .oi 0

0 1 351 .95 1 .9 1 0.04 .651 it ij i j .01
•7 ~a -2i 0.1 .01 651 ili .

o___ 1_________ 0_o_ j 0.01[.-2-~;J2_.011 0

(j) Fuzz Factor 9 or -9 (k) Fuzz Factor 10 or -10

01.11 .58Fr.._, .11j 0 9 '51985* 0

.oo
I .8 9L ~ i ] 1~!±I 1 .89

771 1 1 1 1 1 7 .991 i 1 1 1 11.99

11 48 11 1 1 K8 .1 il 1 1 71/

0 1.1l 8 .77 .~-1 1 0 0 1'. 14 .8 51 .991 85 *-<-1
(1) Fuzz Factor 11 or -11 (m) Fuzz Factor 12 or -12

Figure 5.10 Blurring Templates (continued)
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In part (b) we have expanded the circle (increased

the radius by .25 where each square represents an area of

1.) This represents a lens movement in eiher the postive

or negative direction away from focus. The resulting mask

for fuzz factor 1 or -1 is then 3 x 3 in size with the

values shown. Note that unit squares partially covered by

the circle have a value proportional to the area covered

and are computed to the nearest hundredth. The same

process is completed for masks 2 - 12, as shown in parts

(c) - (m), to produce masks with fuzz factors

2,-2,...,12,-12. When these masks are convolved with the

focused picture different pictures representing greater and

greater degrees of blurring result. (Normalization is

accomplished after convolution by dividing each C(i,j)

value by the area of the circle. This normalization

insures that the total power of the resulting pictures

remains constant.)

Modeled input can now be produced for analysis using

the following procedure:

(1) Select a scene and digitize into a focused

picture.

(2) Convolve the focused picture with Mask 1.

(3) Normalize.

(4) Repeat steps (2) and (3) using Masks 2 - 12.

A PASCAL program which implements this procedure (and

performs other tasks) appears in Appendix Al.
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5.2.4 Experimental Results

Eight focused pictures were selected as examples to

test our focusing algorithm (Section 5.2.2). Effort was

expended to make the pictures possess different features

with respect to size, power, and regularity. These

examples are listed in Table 5.2.

Table 5.2 Example Inputs

Example Title Dominant Features
1 Small Block A Low Power, Small Size
2 Small Block B High Power, Small Size
3 Large Block Large Size, High Density

4 Large Square Large Size, Low Density
5 Checkered Diagonally Periodic
6 Striped Vertically Periodic
7 Random Randomness
8 Mixed All the above

By running the PASCAL program of Appendix Al on an

APPLE II Plus computer, these example pictures were blurred

following the procedure presented in the previous section.

The eight sets of resulting data appear in Appendix Al.

The program computes, as well, the histogram and associated

standard deviation for each image. This data is also

contained in Appendix Al following each blur set.

The final results of the experiment can best be seen

graphically. In Figure 5.11 the standard deviations of

each histogram set versus the fuzz factor are graphed.

'11
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(Note that in Appendix A2 only the positive direction

blurring is reflected in images, histograms, and standard

deviations. Likewise only this data is graphed. But,

recall that the negative direction data is a mirror

reflection of the positive direction data displayed.

Therefore, when looking at Figure 5.9 realize that the

graphs are "folded over" and that the center of the graph

is the "ertical axis.)

5.2.5 Analysis and Conclusions

Casual examination of the graphs in Figure 5.11 shows

that each of the inputs yield a graph which peaks at fuzz

factor 0. Elsewhere the standard deviation decreases in

value as the blurring is increased, with the exception of

the periodic inputs. The obvious conclusion is that the

Single--Step Algorithm implemented on the texture structure

will accomplish successful focusing for the aperiodic

inputs. Results show that size, power, and density input

features do not affect this success. Each curve can be

approximated by a curve of the form: y=a/x, where a is a

constant. The "bumpiness" of the curve is assumed to te

caused by round-off errors.

The results from the random input are better than

expected. "Noise" in pictures is generally represented by

random input. We conclude that "noisy" pictures can be

focused successfully by our application. (Although data s

* * *~* * * ~ *~*
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not provided in this report, this has been shown

experimentally. When a random picture is added to an

object picture, via matrix addition, the resulting standard

deviation graph for this "picture sum" possesses the same

well behaved characteristics for focusing.)

Examination of the graphs produced from the periodic

inputs reveal that our simple Single-Step Algorithm will

fail unless we begin focusing very near the actual focus.

Why the data does not follow the expercted results is due to

the convolution process performed. Recall that convolution

is simply multiplication in the frequency domain of the

Fourier Transform. If a picture is periodic the

corresponding transform will contain impulses. These

components in the transform are responsible for the

oscillating appearance of the periodic input results. This

effect can be alleviated by surrounding the input picture

with a border of zeros. (Levine, 1985) (When,

experimentally this was done to our periodic inputs the

results were, in fact, similar to the results of the other

nonperiodic inputs.) This is not a good solution, however,

as a large "border of zeros" is not physically practical.

It should be noted that in a real imaging system

obtaining a perfectly periodic input is extremely

difficult. Even if the scene were perfectly periodic the

edge effects caused by the lens would create some

distortion in the picture. Considering this, all we need

at most is a slight modificaticn to our algorithm for

~~.- _. . . . . . . ..L ... .°-... .-....... .. , ..-. ." . , .
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successful focusing to occur. Note that the periodic input

graphs in Figure 5.9 have, at focus, a peak value much

greater than at any other point. The other peaks are

relatively small in comparison. (In a real system

distortion would make these peaks even smaller!)

Therefore, we could modify our algorithm such that

convergence does not occur unless the peak is greater, by a

specified amount, than the surrounding points.

5.3 Orientation by Line Trend

In Section 5.1 we introduced an industrial situation

where proper image orientation could aid in the process of

template matching. There are many more applications of
C,.

this process than in the monitoring of a conveyor belt of

parts. For example, microscopic cells and cellular

structures in microbiology have been identified using

template matching procedures (Sternberg, 1983). Template

matching has been successfully used to differentiate and

identify alphanumeric characters (Hall, 1979).

"The simplest approach to scene matching is called

template matching" (Hall, 1979). Basically, template

matching may be described as calculating the measure of

similarity of an image and a template. This is done by

shifting the template across the image and at each position

determining the "correlation". The result is a

S.........
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"correlation array" which may then be analyzed for

identification or classification (Ballard and Brown, 1982).

Besides the two references already mentioned in this

paragraph, more information on template matching may be

found in (Levine, 1985). This reference has a particularly

good explanation of the mathematics involved in template

matching.

It should be obvious that if the template and the

image are not aligned, match results will be, at best,

misleading. Thus, a good deal of additional processing is

required on the image or the template in aligning the two

pictures for valid matching results. In order to make this

process easier, we will apply the shape structure which was

developed in Chapter 4.

5.3.1 Development

The basic idea for this application is that if we can

orient the image with regard to some parameter, then the

number of templates required to be stored in memory for

matching may be minimized and the amount of image

processing required for alignment will be greatly reduced.

For example, suppose the binary representation of an

image (16x16) contains a rectangular object. In memory we

have stored the same object as a template. These pictures

are shown in Figure 5.12. From the figure it is easy to

see that good match results will not be possible because ft:
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 "
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Template

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Binary Image.'

Figure 5.12 A Template Matching Example "

the pictures are not aligned. We could expand our memory

and store another template of the object at this

orientation, or we could rotate, via processing, the image

to get better results. Now suppose the rectangle in the

image was oriented such that there were no horizontal or

vertical edges (at an angle). Obviously, we do not want to

store many templates of the same object. Likewise,

excessive image processing for transforming the image

through 360 degrees of rotation is undesirable. A system .

that would orient input images, then, would be a tremendous "

aid in template matching.

Based upon this example, it would seem that good

paiameters for orientation of the input image would be

"verticalness" and "horizontalness". In the example above,

if the input image was maximized with regard to either

0000000 0000000



7.. - . ,
'  .  

j V- . q W.

87

horizontalness or verticalness only one template would need

be stored and no additional processing would be required on

the image for alignment.

We note that the example object, a rectangle, is

symmetric in shape. Other objects may not have this

property. Therefore, when the object is oriented with

regard to horizontalness, there will be two possibilities

of the resultant image where one is an upside-down version

of the other. The same comment applies to orientati n by

verticalness, where two mirror images are possible. This

is not considered to be too great a problem. Rotation of

the input image by 90 or 180 degrees is a very simple

procedure.

In our application we will use the shape structure of

Figure 4.8 to extract a feature, which is a measure of the

sum of verticalness and horizontalness. (Hereafter

referred to as the HV Sum, this sum will be maximum for a

line which is either vertical or horizontal and less at

other angles.) The methodology for this extraction was

described in Section 4.3.2. This measure will be maximized

by rotating the sensor/lens portion of the vision system

with respect to the scene. Template matching is, thus,

made easier as only one template is required per object in

memory and, at most, only a couple of simple image

transformations (90 or 180 degree rotations) would be

required for angular alignment.
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5.3.2 Algorithm

Based upon the previous discussions we will assume

that the HV Sum is a reliable measure of angular alignment.

As such, we develop an algorithm to accomplish this

objective. A flow chart for this algorithm is shown in

Figure 5.13.

START

INPUT
PICTURE
DATA

61 COMPUTE

SUM1

ROTATE / ROTATE
LENS, + L ENS-" :

PICTURE PICTURE"
DATA DATA

SUMI=SUM2 , SUMI=SUM2 .

YES ?NO YE NO

[. LENS + i

END

Figure 5.13 Flowchart of Orientation Algorithm

I.
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Note that the only differences between this algorithm

and the Single-step Algorithm (Figure 5.4) are in the type

lens movement and feature computations.

Using this algorithm to manage the activities of the

line trend structure will orient scenes composed mostly of

parallel rectangular areas to one of four possible

positions: right-side-up, upside-down, sideways, and

inverted sideways. A worst case for algorithm performance

would occur for objects initially oriented 45 degrees from

the desired position. As was the case for the focusing

algorithm we expect that more efficient algorithms are

possible, although these will not be discussed here. The

algorithm presented would be a part of a higher level

algorithm for template matching.

5.3.3 An Example

In this section we use a simple, hand-produced

example to illustrate the activities of the line trend

structure that are involved in calculating the HV Sum.

(Review methodology presented in Section 4.3.2.) The

object we will use is a simple image of a "house" as shown

in Figure 5.14 (a).

In Figure 5.14 (b) and (c), we show the results of

(after thresholding) applying horizontal and vertical masks

to the input picture. Next we apply the operation which

determines line "membership" in either a vertical or a

• .. . . . .. . . . - . . .. . ... /
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~0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00077777777000
0 00899999987600

e. 05777777855550
P" 05555555433330

05555515433330
05555515433330 .
0 5 7 7 7 7 7 7 8 5 5 5 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0"
0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) A "house" image.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000
00011111111000 00010000001000
00100000010100 00100000010100
01111111111110 01000000 1 00010
00000000000000 01000000100010
00000010000000 010000101000 1 0
01111111111110 01000010100010
00000000000000 00000000000000
00000000000000 00000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Image after horizontal (c) Image after vertical
masking and thresholding. masking and threshclding.

00000000000000 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000
00001111110000 00000000000000
00000000000000 00000000000000
00111111111100 00000000000000
00000000000000 01000000100010
00000000000000 01000000100010
00111111111100 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000
00000000000000 00000000000000

(d) Matrix of values which (e) Matrix of values which
are stored in the first are stored in the second
bit position of the bit position of the
associative memory. associative memory.

Figure 5.14 Example Data Transformations for HV Sum
Calculations
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horizontal line. Recall from an earlier discussion that to

be considered part of a line the individual pixel must be

within a line of at least three pixels. This data,

respectively, is then stored in the associative memory, as

shown in matrix format in Figure 5.14 (d) and (e). The

first matrix represents the first-bit values and the other

matrix represents the second-bit values of the two-bit

associative memory used in the line trend structure (Figure

4.8).

To complete the computation, the Output Logic would

then sum the values in each bit position of the associative

memory. Finally, these sums would be combined to form the

HV Sum. In this example the HV Sum is equal to 32.

We have purposely selected a house image which was

already oriented for simplicity. It is obvious that if the

house was at an angle the HV Sum computed above would be

smaller. It should be equally obvious that the house could

be oriented, depending on its original representation, to

an upside-down or either of two separate sideways

representations. All four representations would possess

the same HV Sum as defined previously. If we graph this

sum versus rotational position, a graph such as shown in
Figure 5.15 is to be expected. The peaks of the graph

represent rotations of the object where the HV Sum is a

relative maximum. (The curve has been drawn to highlight

these peaks and may not necessarily have this smooth

shape.)

iIN



-. 7- VT- - - - - : . . -- - No. -

92

HV

Sum

" ,~
/ \ - / -

x x+90 x+180 x+270

Position Angle

Figure 5.15 HV Sum versus Position Angle
Orientation occurs at the "peaks" and
x is dependent upon initial object
position.

5.3.4 Conclusion

Based upon the single crude example of the previous

section, we conclude that an application of the line trend

structure to orient the sensor/lens of a vision system

seems viable. One very simple experiment is not sufficient

to prove successful results in all cases, and the

discussion of "future work" in Section 6.4 suggests hcw to

develop more evidence.

."5
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5.4 Other Applications

In this section we consider, in rapidly decreasing

detail, four possible applications for the FES. These

applications involve more than the determination of a

single feature. Therefore, an integrated or multi-feature

FES would be required. The power anI versatility of this

structure is such that a comprehensive list of applications

is not possible.

A first possible application continues in the theme

of automatic sensor control for vision systems. In this

application the desire is to utilize the FES such that a

feature, which can be used to control the "zoom" of a

vision system, is extracted. This could be used as an aid

to template matching by assisting in the size alignment of

image and template. The FES should then be able to

determine (1) the size of the object in the input image,

(2) recognize it as being too small or too large, (3)

direct lens movement for magnification, and (4) refocus.

In step (l) the image would need to be edge

highlighted and thresholded. The next operation would be

an area determination. Step (2) would involve the

comparison of this area to a programmed, desired area based

upon system resolution to determine zoom direction. Step

(3) would be accomplished by the algorithm controlling the

FES and Step (4) could be programmed to occur after every

• -'-' '. . ' -. ,'. . , , . 9 I. - -. L ' :, .o k,: .,. .. - C./'-.. , • .- . . . .
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zoom lens movement. All of these steps have been discussed

previously in the text of this thesis, therefore, this

applicotion seems reasonable.

In a second example, suppose we have aerial images as

input. What is desired is an estimate by vegetation type

of crop yields. (Or maybe we would like an estimate of the

area of vegetation destroyed by pests, drought or fire.)

We assume that these estimates may be made by the

analysis of a couple of texture features, a color feature

and a shape feature. The algorithm for our second

application would then be very complicated. By extracting

the average, variance and color features, it would seem

that quite a number of vegetation types could be

distinguished. This information could be stored in an

associative memory comprised of three fields. Area (the

shape feature) computations could be made for each

veqetation type. Based on these areas an estimate of crop

yield could then be determined.

In a third situation inspired by a realistic need at

the researcher's university, suppose we want to identify

the composition of a bushel of seeds by seed type. (Or

maybe determine the percentage of white to red blood

cells?) An expert in seeds (or blood cells) would need to

define differentiating characteristics. if these

characteristics can be expressed as extractable features,

there is nothing to preclude the successful application of

a FES for preprocessing in this situation.
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Finally, as a fourth application, consider a remote

vision system (encircling Mars; in a radioactive

environment; at the bottom of an ocean). The system is

required to have the capability of focusing, rotating and

zooming with regard to observed objects under preprogrammed

control. Continuous transmission of this system reports

observations to its owners. Granted, the programming for

such a system would be a difficult task, but is it not

intuitively obvious that a valid FES application exists

here?
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Chapter 6 SUMMARY

6.1 General

The general conclusion of this thesis is that the

marriage of the principles of associative memory and

cellular logic arrays provides for the design of

preprocessing structures that are ideally suited for

computer vision applications. Furthermore, such a

structure seems to be capable of operation in a real-time

environment.

In this chapter we will review the concepts and

conclusions presented in our investigation of design

concepts for special associative preprocessing structures

for qualitative feature extraction. In Section 6.2 we

analyze the success of the FES with regard to the goals and

objectives established in the Introduction. The next

section relates an estimation of the performance of the

FES. In the last section we itemize further research tasks

which need be accomplished to fully develop the FES as a

realizable structure. The remainder of this section is

devoted to a brief review, by chapter, of the pertinent

h points presented in this thesis.

In Chapter 1, we introduced the subject of computer

p
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vision as the analysis of pictorial information. This

activity was divided into two distinct parts: "low-level"

analysis or preprocessing and "high-level" analysis or

interpretation. Next, we set the stage for the design of a

structure which would perform "low-level" analysis by

defining goals and objectives.

In the next two chapters we reviewed the literature

regarding associative memory and cellular logic arrays.

The use of associative memory was shown to have inherent

parallelism in processing data. Cellular logic arrays were

presented as a "natural" structure for computer vision

systems. Current implementations of both associative

processors and cellular array computers were reported.

Applications of these systems to computer vision were

highlighted.

In Chapter 4, we "married" the concepts presented in

the previous chapters by designing an associative

preprocessing structure for qualitative feature extraction.

Termed a FES, for Feature Extracting Structure, the desig.

was first presented in a general configuration. We then

designed two specific FES's for the extraction of specific

features.

FES applications was the topic for discussion in

Chapter 5. Here we applied the specific FES's as an aid to

focusing or rotation of images in a vision system. Based

upon low-level simulation, we concluded that these

applications were viable. Other applicaticns were

* . b '. . , . . % 
o
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discussed as practical uses for the FES.

6.2 Analysis of Goals and Objectives

In this section we analyze the FES with respect to

the goals and objectives which were established in the

Introduction, Chapter 1. The three categories listed were

simplicity, parallelism and flexibility.

We consider the architecture of the FES to be simple

in the respect that it contains only a few components. The

largest and most complicated component is the associative

cellular array, which achieves a measure of simplicity

through regularity of construction. The array is composed

of a rectangular pattern of cells, where each cell is

composed of relatively simple logic.

One of the problems discussed in Chapter 2 was the

overhead required to read or write to the associative

memory. In our design, by colocating the associative

memory elements with the cells of the array, we have

simplified this overhead. Data is written by the single

operation of latching the input data, in parallel, into the

associative memory. In operation, in the applications

covered, there is no need to read this stored data.

Feature extraction is accomplished by comparative searching

operations which highlight contextual qualities 'f the

data.

The FES structure particularly appears simplr with

. . ...
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respect to the computational work it accomplishes. In the

example of Section 5.2, the input to the FES is a 20 x 20

array of digital information, or 2,400 bits of information

(20 x 20 x 6 bits grey code). Output for the focusing

example consisted of a standard deviation measure which at

its greatest value would be numerically less than 50, or 6

bits. This is a remarkable decrease in data bandwidth.

The structure uses n x n parallel operations whenever

possible. Sequential operations required in applications

may be pipelined as discussed in Chapter 4. Neighborhood

operations are conducted in parallel within the cellular

logic array. Additionally, the parallel search capability

of the associative memory is utilized in each application

discussed. We will defer discussion of the speed thereby

gained due to this highly parallel structure until the next

section.

The flexibility of the FES structure was established

in Chapters 4 and 5. This structure has potential for many

and varied applications in computer vision. The structure

is capable of performing a variety of neighborhood

operations. As such, it is capable of performing standard

preprocessing such as noise removal and enhancement. These

operations, however, are invisible at the output as the FES

is designed for feature extraction and the output is a

coded measure of the feature. Another consideration which

was expressed in the Introduction under flexibility was

expandability. This will be discussed in the next secticn.

pI
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6.3 FES Performance

In this section the intent is to estimate several

performance factors for the FES. The factors selected for

analysis were cost, size and speed.

The cost of a FES implementation will probably be

very expensive. As a relatively "new" architecture, the

development of detailed gate-level designs, chip layout and

templates for production will be expensive with regard to

both money and time. However, this is to be expected in

implementing any new product for special application. In

Chapter 3 it was reported that a rectangular array of

cellular logic was very expensive. In Chapter 2 it was

reported that associative memory was about one and a half

times as expensive as comparable sized RAM. Therefore,

even if we ignore development costs we cannot avoid the

fact that an FES implementation will be very expensive

using current technology. Recall, however, a recurring

theme in this thesis is that these costs are declining.

In our FES design we selected a 22 x 22 array size

primarily because we felt such a design could be

implemented on a single chip. This was based upon the

successful chip implementation SCAPE, which is comparable

in size to the FES. Recall that only the center 16 x 16

cells process picture information. In order to expand a

system to "small scale" resolution such as 64 x 64, 16 FES

chips would be required. It is not unreasonable to assurre
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that 16 FES chips could be placed on a small printed

circuit board. To approximate the resolution of a

television screen (512 x 512), however, would require 64

such circuit boards. Undoubtedly, "large scale"

resolution, such as satellite images of 1000 x 1000, are

beyond the capability of the FES unless "windowing" or

other techniques are employed. However, consider another

trend of technology: the amount of logic possible per chip

is increasing.

Now let us consider the speed of operation obtainable

by the FES. Specifically, we will try to estimate the time

it would take for "focusing" as described in the example

application of Section 5.2. If we examine this particular

FES structure (Figure 4.6), we can realistically assume

that the most time consuming operation will occur in the

"adder" stages of the Output Logic. Let us assume a

conservative figure of 50 nanoseconds for this operation.

Using the steps listed in Section 4.3.1 as a guideline, we

can estimate the time required to analyze the pictorial

information. Assuming the pipelining discussed, a rough

calculation yields: 64 (grey levels) + 2 (latching and

output steps) + 9 (pipeline overhead) + 20 (serial input

estimate) which equals 95 periods of time. Multiplying by

50 nanoseconds yields a rough figure of 5 microseconds to

complete an analysis. Even if this calculation is off by

an order of magnitude, the analysis is completed in much

less time than required to move the lens of the visual

rh
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system. Therefore, we conclude that the FES is capable of

real-time picture preprocessing using today's technology.

6.4 Further Research Tasks

To eventually develop an integrated chip for

low-level picture processing, we need to consider a number

of topics, some of which have been investigated for years

at various research institutions. The lists presented here

are by no means exhaustive. However, accomplishment of

these tasks should aid in the realization of the desired

integrated system.

We have divided this section into three lists of

further research tasks based upon their level of "future

work" activity. The first level addresses specific,

"next-step" tasks which would further develop the concepts

presented in this thesis. These tasks could be pursued as *

MS or PhD projects. The second level addresses the same

topics, except that, these tasks require greater resources

then are normally available to the graduate student. The

third level is concerned with global research directions in

computer vision. We realize that some tasks may overlap

these levels. However, to avoid redundancy we have listed

differtnt tasks in each level.

h-
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First Level Tasks

Develop simple yet realistic models for input
pictures.

Develop efficient algorithms and programs which
*simulate neighborhood operations on sequential

computers.

Investigate additional applications for the FES.

Using the modeling and simulation developed

above, develop verification procedures for
FES applications/operations.

* Develop gate-level designs for FES components.

* Study Controller microprogramming, control and
timing for FES operations.

Second Level Tasks

Develop multiple-feature extracting FES's to
include designs, algorithms and applications.

Develop FES Chip floorplans for implementation.
Conduct high-level simulations to verify designs.

Implement in hardware and further study cellular
logic arrays possessing associative memory.

* Actually construct and test FES components.

* Design and conduct experiments to measure
FES performance in real-time.

Third Level Tasks

Develop image description languages and image
manipulation languages.

Develop efficient algorithms for pattern
recognition and classification using these
languages.

Develop standard "sets" of features which
when extracted during preprocessing provide
sufficient input for the algorithms developed
above.

Research more efficient methods for performing
neighborhood operations, histogramming and the
addition of large numbers of 1-bit values.

°o
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APPENDIX

The experimental data for the focus application

(Section 5.2.2) is contained in this appendix. A PASCAL

program which reads an input picture, defocuses this input,

computes histograms, and calculates standard deviation is

displayed first. This is followed, in succession, by the

data generated from this program for the eight example

pictures listed in Table 5.2. The data shown consists of

each focused picture followed by a series of twelve

defocused images of the same picture. The histograms and

standard deviation results immediately follow each set of

pictures.
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PRCGRAM DEFOCUS (PICTIN,OUTPUT,INPUT);

(THIS PROGRAM9 READS AND DEFOCUSES AN INPUT PICTURE. HISTOGRAMS AND *

- ASSOCIATED STANDARD DEVIATIONS ARE COMPUTED AND PRINTED.
M:**_*.ICHAEL.BIBBY MAY 1986r

CONST NUM=22; NUMB-16;

TYPE MATX=ARRAY[1. .NUM,l- .NUMJ OF INTEGER;
MACY=ARRAY 1. .NUMBl. .NUMBJ OF INTEGER;
HISTO=ARRAYtO. .63,3..121 OF INTEGER;

'JAR QiCAT:MlATX<;
YMAT:MATY,
MIST.: NSTO:
FUIFAC: INTEGER;
CNE, INIT: BOOLEAN;
CATACUT, CATA:N, PICTIN;TEXT;
AREA ,AA, 8, CC , D, SE , F , G, HH: REAL;

PROCEDURE NGRA.M(YNlAT:YIATY;VAR FUZFAC:INTEGER; VAR HIST:HISTO; VAR --NIT:
BOOLEAN;VAR CONE:BOOLEAN);-

*THIS SUBROUTINE COMPUTES THE HISTOGRAM FOR AN IMAGE *

'AR ?CW,COL_,CIF:INTEGER;

BEGIN
lEINCT CNE:

THEN BEGIN
IF NOT INIT)

THEN BEGIN

FOR ROW:-O To 63 DO
FOR COL:=O TO 12 CO

HISTrROW,CCLI :=O;
!NIT:=TRUE:
END:

FOR ROW:=! TO 16 CO
FOR O-L:=. TO 16 Co

HIST[YMAT[ROW ,COLVFUZFACV=-HISTEYMAT[ROW,COLVFUFACI.1:
END;

END;

PROCEDURE PRHIST'HIST:HISTO);

*THIS SUBROUTI'NE PRINTS THE HISTOGRAMS *

VAR PAPSTART,?CW,COL::NTEGER;

3501 N
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WRITELN( 'PROCEED?')
READ LN(CSTA W" C

WRITELN(DATAOUT);
WRITELN(CDATACUT);
WRITELN(DATAOUT);
WdRITELN(DATAOUT);
WRITELN(DATAOUT);
W4RITELN(DATAOUT,4 INTENSITY HISTOGRAMS FOR EXAMPLE');
WRITE(DATAOUT,' ----------------------------- ;

WdRITELN(DATAOUT,'---------------------------------------------'C
WRITELN(DATAOUT);
WRI'TELN(DATAOUT, I FUZZ FACTOR')

fRITE(DATAOUT,' I P);
FOR ROW:-O TO 12 DO

'RITE(DATAOUT,RCW:3,'C
WRITELNiDATAOUT);
WRITE(DATACUT,-- - - - - - - - - - -- - - - - - - - -

WRITELN(DATAOUT,-----------------------'C
FOR ROW:-O TO 63

DO BEGIN
IF ROW=45

THEN BEGIN
WRITELN( 'INSERT PAPER');
READLN(CPAP);
WRITELN(DATACUTC;
4RITELN( DATACUT);
WRITELN(DATAOUTC;
WRITELN(CDATAOUT);
WRITELN(CDATADUT);
WRITE(DATAOUT,'I;
WRITELN(DATAOUT, 'INTENSITY HISTOGRAMS (CONTINUED)');
WRITE(DATAOUT,' -------------

WRITELN(DATAOUTI'------------------------------------
WRITELN(CDATAOUT);
END;

WRITECOATAOUT,' ',RCW:3,' /');
FOR COL:=O TO 12 DO

W4RITE)DATAOUT,HISTEROW,COL]:3,''C
WRITELN( DATAOUT);
END;

END;

PROCEDURE PRFOC :HIST:HISTO);

C'THIS SUBROUTINE CALCULATES AND PRINTS HISTOGRAM STATISTICS '

TYPE FOCUS=ARRAY[O. .12] OF REAL;

VAR MN, STD :FOCUS:
ROW,COL::NTEGER,
SQROOTI PSUM,SUM: REAL;

BEGIN
FOR COL:-O TO 12

DO BEGIN
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SUm:0o;
FOR ROW:-O TO 63

DO BEGIN
PSUM:-ROW'HIST[ROW,COLI;r
SUM: sSUM+PSUM;
END;

MN[ CDLI: SUM/256;
SUM:-O;
FOR ROW:-O To 63

DO BEGIN
PSUM:sSQR(ROW-MN(COLL'*HISTCROW,COLJ;
SUM: SUM+PSUM:
END;

'RITELN( SUM: 12:3);
READ LN(SQROOT);
STD(COL] :sO.0625'SQROOT;
END;

WoRITELN(DATAOUT);
WRITELN( DATAQUT);
WRITELN(DATAOUT,' HISTOGRAM4 ANALYSIS');
WRITE(DATAOUT,4----------
WRITELN(DATAOUT '-------------------------------------------
WRITELN(DATAOUT);
WRITE(DATAOUT,'
WRITELN(DATAOUT,4 FUZZ FACTOR MEAN STANDARD DEVIATION');
WRITE(DATAOUTJ
WRITELN(ZATAOUTV- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

FOR COL:=O TO 12
DO WRITELN(DATAOUT,2 ',COL:ZP' 'MN[COLI:7:2,

* , ,STMCOLI:7:2 ;

END;

PROCEDURE LOADMAT (VAR LMAT:MATX; 'JAR DATAIN,DATAOUT:TEXT; VAR YMAT:MATY;
VAR FUZFAC:INTEGER; VAR HI'ST:HISTO;VAR INIT,DCNE:BOOLEAN);

(THIS SUBROUTINE READS THE INPUT PICTURE *

VAR COL, ROW:INTEGER;

BEGIN
FOR RCW:-L TO NUM

DO BEGIN
FOR COL:1! TO NUM

DO BEGIN
READ (DATAIN , XMAT ROW, COL 1
IF(lROW)3; AND (ROW<20) AND (COL)3) AND (COL<20))

THEN BEGIN
Y4ATfROW-3,COL3:XNAT[ROW,CDL>;

END;
END;

READLN(DATA:N);
END;

FUZFAC :-



HGRAM(YMAT,FUZFAC,HIST,INIT,DONE8;
END:

PROCEDURE CALCA(XMAT:M4ATX;ROW,COL:INTEGER;AABB,CC, D, E:REAL;
VAR SI,S2,53,54,SS:REAL);

"' HIS SUBROUTINE PERFORMS BLURRING COMPUTATIONS '

Si: A.A'(XMAT[ROW, COL+1. +XAT(ROW,COL.I ] *XMAT[ ROW-i,CCL>-
XM.AT(ROW+i,COLfl;

S2:-BB'CXMAT(ROW-1,COLi]1+XMAT(ROW-1,COL+i]+
XMkAT(ROW+i,COL-11+XMATfROW+i,OOL+i));

S3:=CC'CXMAT[ROW,COL*2]+XMAT(ROW,C0L-2]*XM4AT(ROW-2,COL>,
X5ATROW+ 2, COLI ); .

54: =DD' CXI'AT[ ?CA'-2 ,COL-iI]+XIIAT[ROW-2, COL'-i]1
XLMAT[ROW-i,COL-2>-XMATROW1,COL+21VXMAT(ROW+i,COL-2>
X MAT[RCW*1,COL-2].Xt4AT[ROW*2,COL-I+XktAT[ROW-2,COL+Ii);

55:-ES' XMATfROW-2 ,COL-2 ]+XMAT[ ROW-2 ,CDL+2 3
END; XSAT[ROW.2,COL-2I.XMATIRCW+2,COL-2]C;

PROCEDURE CALCB(XMAT:M4ATX;ROW,COL:INTEGER;FF,GG,HH:REAL;
VAR S6,57,S8:REALC:

ATHIS SUBROUTINE PERFORMS BLURRING COMPUTATIONS. '

BEGIN
S6:-FFCX.MAT[ROW,COL*31+XMAT[ROW,COL-3]+XMAT[R0W-3,COL]'

X.AT[ROW+ 3, COLJIC);
S7:-GG*XAT(ROW-3,COL-I]+fLMAT[ROW-3,COL+i]+
XMAT[ROW-I,COL-3]+X3IAT(ROW-i,COL+3>+XMAT[ROW+I,OL-3]+
X.MAT(ROW+1,CDL+3]+XMAT.[ROW+3,COL-1]*XMAT(ROW+3,OL-I]C;

S8:-HH'(XMAT[ROW-3,CDL-2]+XMAT[ROW-3,COL+2]+
XMAT[ROW-2,COL-31#X.MAT[ROW-2,COLr3 J+XIATEROW+2,COL-3 1+
XMAT[ROW+2,COL±3]*XMAT(ROW+3,COL-2]+XMATfROW+3,COL+2]C;

END;

PROCEDURE tALCCXMAT:MATX;VAR YMAT:MATY;VAR DATAOUT:TEXT;AREA,AA,BB,CC,
DD, E, FF, OG , H :REAL ;DONE: BOOLEAN)C

*THIS SUBROUTINE PERFORMS BLURRING COMPUTATIONS. '

VAR ROW, CCL: INTEGER;
SI, S2,S3,S4, 55,S6,S7,SB :REAL;

BEGIN
!?(NOT DONE)

THEN BEGIN

FOR ROW:-4 TO 19
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DO BEGIN
FOR COL:-4 TO 19

DO BEGIN
CALCA(XMAT,ROW,COL,AA,BB,CC,DD,EE,S1,S2,S3,S4,55);
CALCB()(MAT, ROW, COL,.FF, GG, HH, S6, S7, S 8 );

YMAT[ROW-3,COL-3]:-ROUND( (XMAT[ROW,COL]++#2*53tS4*S5.
56+57+58)/A.REA);

END;
END;

END;
END;

PROCEDURE FUZZ (XMAT:MATX;VAR YMAT:MATY;VAR DATAOUT:TEXT;VAR DONE: BOOLEAN;
VAR AREA,AA,BB,CC,DD,EE,FF,GG,HH:REAL; VAR FUZFAC:INTEGER);

(THIS SUBROUTINE INITIALIZES VARIABLES FOR DEFOCUSING COMPUTATIONS.

BEGIN
WRITELN(FUZFAC:2);
IFU(PUZFAC<1) OR (FUZFAC>12))

THEN BEGIN
DONE: -TRUE

END
ELSE BEGIN

BB:0O;CC:O;DD:O;EE:=O;FF:O;GG:O;HH:=O;
CASE FUZFAC OF

I: BEGIN
AREA:Z. 78;AA:-0.195;

END;
2: BEGIN

AREA:=3.14 ;AA:=0.455 ;BB: =0.08;
END;

3: BEGIN
AREA :-4 .92 A: c. 73 ;BB : - .25;

END;
4: BEGIN

AREA 7 .08 ;AA : 0 .97,;BB : 0.55
END;

5t BEGIN
AREA:-9.6;A.A:-1;BB:-0.86;CC:=0.23;DD:=0.03;

END;
6: BEGIN

AREA:-12.56 ;AA:=1 ;BB:S0 .98 ;CC: -0.47 ;DD: O.22;
END;

7: BEGIN
ARE-A:s15.88;AA:1I;BB:1I;CC:s0.73;DD:sO.48;
EE: =0.03;

END;
8z BEGIN

AREA:-19.6;AA:I;BB:lI;CC:O0.99;DD:-0.77;
EE: =0.12;

END;
9: BEGIN

71
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AREA:-23.68;AA:1I;BB:1l;CC:1I;DD:0.96;
E: - .35 ;F: 0 .24 ;GG : - .08;

END;
10: BEGIN

AR-A:-28 .24 ;AA:-1 ;BB :1 ;CC: 1 ;DD: .1;
EE:-O.65;FF:-0.48;GG:.O.32;HH:.O.02;

END;
11: BEGIN

AREA:-33 .16 ;AA:1 ;BB:-1 ;CC: 1DD-I
EE:-O.89;FF:-0.77;GG:-0.58;HH:.O.11;

END;
12: BEGIN

AREA:-38.48 ;AA:-I ;BB: 1 ;CC: 1 ;DD :-
EE:-i;FF:..99 ;GG:-O. 85 ;HH:-O. 34;

END;
END;

END;
END;

(************* MAIN PROGRAM ****~~***********

BEGIN
RESET(DATAIN, 'PICTIN.TEXT');
REWRITECDATAOUT, 'PRINTER:');
DONE: -FALSE;
INIT:=FAL-SE;
LOADMAT(XMAT,DATAIN,DATAOUT,YMAT,FUZFAC,HIST,INIT,DONE);
WHILE NOT DONE

DO BEGIN
FOR FUZFAC:1l TO 13
DO BEGIN

FUZZ (XMAT,YMAT,DATAOUT,DONE,AREA,AA,BB,CC,DD,EE,FF,GG,HH,FUZFAC);
CALC(XMAT,YMAT,JATAOUT,AREA,AA.BB,CC,DD,EE,FF,GG,u,Dt4E);
HGRAbI(YNAT,FUZFAC,EIIST,INIT,DONE);
END;

END;
PRHISTfHIST.
PRFCC'HIS');
CLOSE ATACUT,CflUNCH;;

END.
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EXAMPLE 1 "SMALL BLOCK A"

THE FOCUSED PICTURE
--------------------------------------------------------- ---------

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 00 00 00 00 00 00 00 0
00 0 000 0 0 00 0 00 00 0
0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 00 0
0 00 000 0 00 00 00 00 0
0 0 0 0 0 0 0 00 0 00 0 00 0
0 00 00 0 05050 00 00 0 0 0
0 00 00 00050 50 0 0 0 0 0 0 0
0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 00 0
0 00 00 00 00 00 00 00 0
0 00 0 000 0 000 00 00 0
0 00 00 0 00 00 000 00 0
0 00 00 00 0 00 000 00 0

hr.
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INTENSITY HISTOGRAMS FOR EXAMPLE 1
----------------------------------------------------------

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12

------------------------------------------------------------------------

0 /252 244 240 240 240 232 224 224 224 212 204 204 204

1 /0 0 4 0 0 8 8 0 0 12 20 8 0

2/ 0 0 0 0 0 0 0 8 8 0 0 12 20

3/ 0 0 0 4 0 0 8 0 0 8 0 0 0

4 /0 0 0 0 4 0 0 8 8 0 8 8 8

5 /0 8 0 0 0 4 0 0 0 8 8 8 24

6 /0 0 0 0 0 0 4 4 0 0 4 16 0

7 /0 0 0 0 0 0 0 0 4 4 12 0 0

L 8/ 0 0 0 0 0 0 0 0 0 12 0 0 0

9/0 0 8 0 0 0 0 0 0 0 0 0 0

10/0 0 0 8 0 0 0 8 12 0 0 0 0

I11 0 0 0 0 8 8 8 0 0 0 0 0 0

12 /0 0 0 0 0 0 0 0 0 0 0 0 0

13 /0 0 0 0 0 0 0 4 0 0 0 0 0

14/0 0 0 0 0 0 0 0 0 0 0 0 0

15 /0 0 0 0 0 0 0 0 0 0 0 0 0

16 /0 0 0 0 0 0 4 0 0 0 0 0 0

17 /0 0 0 0 0 0 0 0 0 0 0 0 0

18 /0 0 0 0 0 0 0 0 0 0 0 0 0

19 /0 0 0 0 0 0 0 0 0 0 0 0 0

20/0 0 0 0 0 4 0 0 0 0 0 0 0

21/ 0 0 0 0 0 0 0 0 0 0 0 0 0

22 /0 0 0 0 0 0 0 0 0 0 0 0 0

23/0 0 0 0 0 0 0 0 0 0 0 0 0

24/0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 4 0 0 0 0 0 0 0 0

26/ 0 0 0 0 0 0 0 0 0 0 0 0 0

27/ 0 0 0 0 0 0 0 0 0 0 0 0 0

28 /0 0 0 4 0 0 0 0 0 0 0 0 0

29 /0 0 0 0 0 0 0 0 0 0 0 0 0

30 /0 0 0 0 0 0 0 0 0 0 0 0 0

31 /0 0 0 0 0 0 0 0 0 0 0 0 0

32/ 0 0 4 0 0 0 0 0 0 0 0 0 0

33 /0 0 0 0 0 0 0 0 0 0 0 0 0

34/ 0 0 0 0 0 0 0 0 0 0 0 0 0

35/ 0 0 0 0 0 0 0 0 0 0 0 0 0

36/ 0 0 0 0 0 0 0 0 0 0 0 0 0

37/0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0
39 /0 4 0 0 0 0 0 0 0 0 0 0 0
40 /0 0 0 0 0 0 0 0 0 0 0 0 0
41/ 0 0 0 0 0 0 0 0 0 0 0 0 0

42 /0 0 0 0 0 0 0 0 0 0 0 0 0

43 /0 0 0 0 0 0 0 0 0 0 0 0 0

44 /0 0 0 0 0 0 0 0 0 0 0 0 0

I,

k." S , - a
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INTENSITY HISTOGRAMS (CONTINUED)

45 /0 0 0 0 0 0 0 0 0 0 0 0 0
46 /0 0 0 0 0 0 0 0 0 0 0 0 0
47 /0 0 0 0 0 0 0 0 0 0 0 0 0
48/ 0 0 0 0 0 0 0 0 0 0 0 0 0
49 /0 0 0 0 0 0 0 0 0 0 0 0 0
50 /4 0 0 0 0 0 0 0 0 0 0 0 0
51 /0 0 0 0 0 0 0 0 0 0 0 0 0
52 /0 0 0 0 0 0 0 0 0 0 0 0 0
53 /0 0 0 0 0 0 0 0 0 0 0 0 0
54 /0 0 0 0 0 0 0 0 0 0 0 0 0
55 /0 0 0 0 0 0 0 0 0 0 0 0 0
56/ 0 0 0 0 0 0 0 0 0 0 0 0 0
57 /0 0 0 0 0 0 0 0 0 0 0 0 0
58 /0 0 0 0 0 0 0 0 0 0 0 0 0
59 /0 0 0 0 0 0 0 0 0 0 0 0 0
60 /0 0 0 0 0 0 0 0 0 0 0 0 0
61 /0 0 0 0 0 0 0 0 0 0 0 0 0
62 /0 0 0 0 0 0 0 0 0 0 0 0 0
63 /0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 0.78 6.20
1 0.77 4.90
2 0.80 4.23
3 0.80 3.86
4 0.80 3.63
5 0.77 3.14
6 0.81 2.83
7 0.80 2.51
8 0.77 2.34
9 0.78 2.07

10 0.78 1.90
11 0.78 1.77
12 0.75 1.61
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EXAMPLE 2 "SMALL BLOCK B"

THE FOCUSED PICTURE

50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 0 0 50 50 50 50 50 50 50
50 50 50 50 50 50 50 0 0 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
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INTENSITY HISTOGRAMS FOR EXAMPLE 2

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12

0 /-4 0 0 0 0 0 0 0 0 0 0 0 0
1/ 0 0 0 0 0 0 0 0 0 0 0 0 0
2/ 0 0 0 0 0 0 0 0 0 0 0 0 0
3/ 0 0 0 0 0 0 0 0 0 0 0 0 0
4/ 0 0 0 0 0 0 0 0 0 0 0 0 0
5/ 0 0 0 0 0 0 0 0 0 0 0 0 0
6/ 0 0 0 0 0 0 0 0 0 0 0 0 0
7/ 0 0 0 0 0 0 0 0 0 0 0 0 0
8/ 0 0 0 0 0 0 0 0 0 0 0 0 0
9/ 0 0 0 0 0 0 0 0 0 0 0 0 0
0/ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 4 0 0 0 0 0 0 0 0 0 0 0
12/ 0 0 0 0 0 0 0 0 0 0 0 0 0
13/ 0 0 0 0 0 0 0 0 0 0 0 0 0
14/ 0 0 0 0 0 0 0 0 0 0 0 0 0
15/ 0 0 0 0 0 0 0 0 0 0 0 0 0
16/ 0 0 0 0 0 0 0 0 0 0 0 0 0
17/ 0 0 0 0 0 0 0 0 0 0 0 0 0
18/ 0 0 4 0 0 0 0 0 0 0 0 0 0
19/ 0 0 0 0 0 0 0 0 0 0 0 0 0
20/ 0 0 0 0 0 0 0 0 0 0 0 0 0
21/ 0 0 0 0 0 0 0 0 0 0 0 0 0
22/ 0 0 0 4 0 0 0 0 0 0 0 0 0
23/ 0 0 0 0 0 0 0 0 0 0 0 0 0
24/ 0 0 0 0 0 0 0 0 0 0 0 0 0
25/ 0 0 0 0 4 0 0 0 0 0 0 0 0
26/ 0 0 0 0 0 0 0 0 0 0 0 0 0
27/ 0 0 0 0 0 0 0 0 0 0 0 0 0
28/ 0 0 0 0 0 0 0 0 0 0 0 0 0
29/ 0 0 0 0 0 0 0 0 0 0 0 0 0
30/ 0 0 0 0 0 4 0 0 0 0 0 0 0
31/ 0 0 0 0 0 0 0 0 0 0 0 0 0
32/ 0 0 0 0 0 0 0 0 0 0 0 0 0
33/ 0 0 0 0 0 0 0 0 0 0 0 0 0
34/ 0 0 0 0 0 0 4 0 0 0 0 0 0
35/ 0 0 0 0 0 0 0 0 0 0 0 0 0
36/ 0 0 0 0 0 0 0 0 0 0 0 0 0
37/ 0 0 0 0 0 0 0 4 0 0 0 0 0
38/ 0 0 0 0 0 0 0 0 0 0 0 0 0

39 / 0 0 0 0 8 8 8 0 0 0 0 0 0
40 / 0 0 0 8 0 0 0 8 12 0 0 0 0
41/ 0 0 8 0 0 0 0 0 0 0 0 0 0
42/ 0 0 0 0 0 0 0 0 0 12 0 0 0
43/ 0 0 0 0 0 0 0 0 4 4 12 0 0
44 / 0 0 0 0 0 0 4 4 0 0 4 16 0

.. x
.t.v .Z, .,.:.'', V
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INTENSITY HISTOGRAMS (CONTINUED)

45 0 8 0 0 0 4 0 0 0 8 8 8 24
46 0 0 0 0 4 0 0 8 8 0 8 8 8
47 /0 0 0 4 0 0 8 0 0 8 0 0 0
48/ 0 0 0 0 0 0 0 8 8 0 0 12 20
49 /0 0 4 0 0 8 8 0 0 12 20 8 0
50 /252 244 240 240 240 232 224 224 224 212 204 204 204
51 /0 0 0 0 0 0 0 0 0 0 0 0 0
52 /0 0 0 0 0 0 0 0 0 0 0 0 0
53 /0 0 0 0 0 0 0 0 0 0 0 0 0
54 /0 0 0 0 0 0 0 0 0 0 0 0 0
55 /0 0 0 0 0 0 0 0 0 0 0 0 0
56 /0 0 0 0 0 0 0 0 0 0 0 0 0
57 /0 0 0 0 0 0 0 0 0 0 0 0 0
58 /0 0 0 0 0 0 0 0 0 0 0 0 0
59 /0 0 0 0 0 0 0 0 0 0 0 0 0
60 /0 0 0 0 0 0 0 0 0 0 0 0 0
61 /0 0 0 0 0 0 0 0 0 0 0 0 0
62 /0 0 0 0 0 0 0 0 0 0 0 0 0
63 /0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 49.22 6.20
1 49.23 4.90
2 49.20 4.23
3 49.20 3.86
4 49.20 3.63
5 49.23 3.14
6 49.19 2.83
7 49.20 2.51
8 49.23 2.34
9 49.22 2.07

10 49.22 1.90
11 49.22 1.77
12 49.25 1.61

I.
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EXAMPLE 3 "LARGE BLOCK"

THE FOCUSED PICTURE
--------------------------------------------------------------

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 o o o o o o o 0 0 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0555000555000"0

,- - .. -

, ." f ,". :++'; ' ..- , • ..- - . - .. .- ,- - --. - -- . . .-+ . . . . . .. - . -. . .- .. --
. . -.
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INTENSITY HISTOGRAMS FOR EXAMPLE 3

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12

0 /156 116 112 112 112 72 64 64 64 20 12 12 12
1/ 0 0 4 0 0 8 8 0 0 44 20 8 0
2/ 0 0 0 0 0 32 0 8 8 0 32 12 12
3/ 0 0 0 4 0 0 8 0 0 8 0 32 8
4/ 0 0 0 0 4 0 32 8 0 0 8 8 32
5 /0 40 0 0 0 4 0 8 8 0 0 0 8
6/ 0 0 0 0 0 0 4 28 0 8 8 0 0
7 /0 0 0 0 0 0 0 0 36 4 0 8 8
8/ 0 0 0 0 0 0 0 0 0 32 4 4 4
9 /0 0 8 0 0 0 0 0 0 0 8 8 0

10/ 0 0 32 8 0 0 0 0 0 0 24 0 8
11 /0 0 0 0 8 8 0 0 0 0 0 24 8
12 /0 0 0 0 0 0 8 8 8 8 8 8 24
13 /0 0 0 32 0 0 0 0 0 0 0 0 0
14 /0 0 0 0 0 0 0 0 0 0 0 0 0
15 /0 0 0 0 32 0 0 0 0 0 0 0 0
16 /0 0 0 0 0 32 8 8 8 8 8 8 8
17 /0 0 0 0 0 0 24 0 0 0 0 0 4
18 /0 0 0 0 0 0 0 24 0 0 4 4 0
19 /0 0 0 0 0 0 0 0 28 28 8 8 8
20 / 0 0 0 0 0 0 0 4 0 0 16 16 16
21/ 0 0 0 0 0 0 4 0 0 0 0 0 0
22 /0 0 0 0 0 0 0 0 0 0 0 0 8
23 /0 0 0 0 0 4 0 0 0 0 0 8 0
24 /0 0 0 0 0 0 0 0 0 0 8 0 0
25/ 0 0 0 0 4 0 0 0 0 8 0 0 0
26/ 0 0 0 0 0 0 0 0 0 0 0 0 0
27 /0 0 0 0 0 0 0 0 8 0 0 0 8
28/ 0 0 0 4 0 0 0 8 0 0 0 8 0
29 /0 0 0 0 0 0 0 0 0 0 8 0 4
30 / 0 0 0 0 0 0 8 0 0 8 16 20 16
31/ 0 0 0 0 0 0 0 0 24 16 0 0 0
32/ 0 0 4 0 0 0 0 24 0 0 4 0 0
33 /0 0 0 0 0 8 24 0 0 0 0 0 0
34/ 0 0 0 0 0 24 0 0 0 4 0 0 8
35/ 0 0 0 0 32 0 0 0 0 0 0 0 0
36 /0 0 0 0 0 0 0 0 4 0 0 8 0
37 /0 0 0 0 0 0 0 0 0 0 0 0 0
38 /0 0 0 32 0 0 0 0 0 0 8 0 16
39/ 0 4 0 0 0 0 0 4 0 0 0 16 0
40 / 0 0 32 0 0 0 0 0 0 0 16 0 0
41/ 0 0 0 0 0 0 0 0 0 8 0 0 4
42 /0 0 0 0 0 0 0 0 0 16 0 0 0
43 /0 0 0 0 0 0 4 0 24 0 0 0 0
44/ 0 0 0 0 0 0 0 24 0 0 0 4 0

"I
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INTENSITY HISTOGRAMS (CONTINUED)

45/ 0 32 0 0 0 0 0 0 0 0 0 0 0
46 / 0 0 0 0 0 0 24 0 0 0 4 0 16
47 /0 0 0 0 0 4 0 0 0 0 0 16 0
48 / 0 0 0 0 0 24 0 0 0 4 16 0 0
49 /0 0 0 0 0 0 0 0 0 16 0 0 0
50 /100 64 64 64 64 36 36 36 36 16 16 16 16
51 /0 0 0 0 0 0 0 0 0 0 0 0 0
52 /0 0 0 0 0 0 0 0 0 0 0 0 0
53 /0 0 0 0 0 0 0 0 0 0 0 0 0
54 /0 0 0 0 0 0 0 0 0 0 0 0 0
55 /0 0 0 0 0 0 0 0 0 0 0 0 0
56 /0 0 0 0 0 0 0 0 0 0 0 0 0
57 /0 0 0 0 0 0 0 0 0 0 0 0 0
58 /0 0 0 0 0 0 0 0 0 0 0 0 0
59 /0 0 0 0 0 0 0 0 0 0 0 0 0
60 /0 0 0 0 0 0 0 0 0 0 0 0 0
61 /0 0 0 0 0 0 0 0 0 0 0 0 0
62 /0 0 0 0 0 0 0 0 0 0 0 0 0
63 /0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 19.53 24.39
1 19.52 22.91
2 19.55 21.77
3 19.67 21.33
4 19.55 20.93
5 19.55 20.18
6 19.56 19.38
7 19.52 18.73
8 19.53 18.34
9 19.55 17.64

10 19.55 16.79
11 19.53 16.19
12 19.52 15.57

-1

. . . - . . .. . . . . . . . . . .. - , .. .. . •...
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EXAMPLE 4 "LARGE SQUARE"

THE FOCUSED PICTURE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0
0 0 0 50 50 50 50 50 50 50 50 50 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 0 00 000 00 0

I

S.. . .. . . . . . . .. . . . . . . . . . . . .. . .ii
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INTENSITY HISTOGRAMS FOR EXAMPLE 4

FUZZ FACTOR
/ 0 1 2 3 4 5 6 7 8 9 10 11 12

0 /220 152 148 148 148 88 80 80 80 24 16 16 16
1 /0 0 4 0 0 8 8 0 0 52 20 8 0
2 /0 0 0 0 0 48 0 8 8 4 40 12 12
3 /0 0 0 4 0 4 8 0 0 8 0 40 8
4/ 0 0 0 0 4 0 48 8 0 0 12 8 48
5/ 0 64 0 0 0 4 0 8 8 8 0 0 0
6 /0 0 0 0 0 0 4 44 4 0 12 16 12
7 /0 0 0 0 0 0 4 0 48 12 8 8 40
8 /0 0 0 0 0 0 0 0 0 40 40 40 8
9 /0 0 8 0 0 0 0 0 0 8 0 32 56

10/ 0 0 56 8 0 0 0 8 8 0 40 20 8
11 /0 4 0 0 8 8 8 4 0 48 36 32 28
12 /0 0 0 0 0 0 0 40 48 20 8 12 16
13 /0 0 0 56 0 0 0 8 20 8 8 12 4
14 /0 0 0 0 0 48 48 20 4 8 16 0 0
15 /0 0 0 0 56 0 0 0 16 16 0 0 0
16 /0 0 0 0 0 8 28 24 8 0 0 0 0
17 /0 0 0 0 0 0 8 0 4 0 0 0 0
18 /0 0 4 0 0 28 0 0 0 0 0 0 0
19 /0 0 0 0 0 0 8 4 0 0 0 0 0
20 /0 0 0 0 0 0 0 0 0 0 0 0 0
21 /0 0 0 0 28 8 4 0 0 0 0 0 0
22 /0 0 0 4 0 0 0 0 0 0 0 0 0
23/0 0 0 0 0 0 0 0 0 0 0 0 0
24 /0 0 0 0 0 4 0 0 0 0 0 0 0
25 /0 0 0 28 12 0 0 0 0 0 0 0 0
26/ 0 0 0 0 0 0 0 0 0 0 0 0 0
27/ 0 0 0 0 0 0 0 0 0 0 0 0 0
28 /0 0 0 8 0 0 0 0 0 0 0 0 0
29 /0 0 0 0 0 0 0 0 0 0 0 0 0
30 /0 0 28 0 0 0 0 0 0 0 0 0 0
31 /0 0 0 0 0 0 0 0 0 0 0 0 0
32 /0 0 8 0 0 0 0 0 0 0 0 0 0
33 /0 0 0 0 0 0 0 0 0 0 0 0 0
34 /0 0 0 0 0 0 0 0 0 0 0 0 0
35 /0 0 0 0 0 0 0 0 0 0 0 0 0
36/ 0 0 0 0 0 0 0 0 0 0 0 0 0
37/ 0 0 0 0 0 0 0 0 0 0 0 0 0
38 /0 0 0 0 0 0 0 0 0 0 0 0 0
39/ 0 36 0 0 0 0 0 0 0 0 0 0 0
40 /0 0 0 0 0 0 0 0 0 0 0 0 0
41 /0 0 0 0 0 0 0 0 0 0 0 0 0
42 / 0 0 0 0 0 0 0 0 0 0 0 0 0
43 /0 0 0 0 0 0 0 0 0 0 0 0 0
44 /0 0 0 0 0 0 0 0 0 0 0 0 0

• - . -. . . .. . . ... "
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p.

INTENSITY HISTOGRAMS (CONTINUED)
---------------------------------------------------------

45 /0 0 0 0 0 0 0 0 0 0 0 0 0

46 /0 0 0 0 0 0 0 0 0 0 0 0 0

47 /0 0 0 0 0 0 0 0 0 0 0 0 0

48 /0 0 0 0 0 0 0 0 0 0 0 0 0

49/0 0 0 0 0 0 0 0 0 0 0 0 0

50 /36 0 0 0 0 0 0 0 0 0 0 0 0
51/ 0 0 0 0 0 0 0 0 0 0 0 0 0

52/ 0 0 0 0 0 0 0 0 0 0 0 0 0

53 /0 0 0 0 0 0 0 0 0 0 0 0 0
54 /0 0 0 0 0 0 0 0 0 0 0 0 0

55 /0 0 0 0 0 0 0 0 0 0 0 0 0

56/ 0 0 0 0 0 0 0 0 0 0 0 0 0

57 /0 0 0 0 0 0 0 0 0 0 0 0 0

58 /0 0 0 0 0 0 0 0 0 0 0 0 0

59/ 0 0 0 0 0 0 0 0 0 0 0 0 0

60 /0 0 0 0 0 0 0 0 0 0 0 0 0
61 /0 0 0 0 0 0 0 0 0 0 0 0 0
62 /0 0 0 0 0 0 0 0 0 0 0 0 0

63/0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS
--------------------------------------------------------------------

FUZZ FACTOR MEAN STANDARD DEVIATION
--------------------------------------------------------------------

0 7.03 17.38

1 6.91 13.20
2 7.05 10.50
3 7.16 9.46
4 7.16 8.92
5 7.00 7.69
6 7.25 6.91
7 7.03 5.99
8 7.13 5.73
9 7.13 4.98

10 7.09 4.36
11 7.02 3.80
12 7.00 3.40

ow
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EXAMPLE 5 "CHECKERED"

THE FOCUSED PICTURE
------------------------------- -----------------

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 5005 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50



139

r. en00 00 0 0 00 enr -I -r r e

I r0 m c00en r-0en r- e r. en r- en r- e
M fn M "NmNmmm N N m I'd CkCN N N N N N N IN N N N N N (N

N 00 0 0 00 0 0 0 mInc nNmN( , nNe NmNNNNNNN NNNN0~( IN N~r,~( en r- m N(N n rN(n r- rn r n ((n(NrN(m

en Nf" f" f"N enC4 n " n "m NN N "N rN N N N N N N N C4N N

(N((N((fn(N(Nm r mN(N(n r, n(N(NN 7 " N enNmN INm2 n nNZ "NNN2 ~
00 0 0 00 0 0 0 enI nr nr - nr -e -e

00 0 0 00 0 0 0 N(nMM( n"MNMNN 4NNNNNN(4NNC

enr I .Mf Mr lf r Ir nr

04
M ' e I

m N fnr( nNm"mN D ~lNNN0 ~ N
I 0 0 0 00 0 0 0 :N4NNNNNN(((((((( m r- n r- m r- n r- fN(N(n (N( m(r(N(N(

(N M(4N e N M NN e-,N n N n NN en ( N N N NC14 N N IN N N N NN

0 0 a00C nr -e -f mr nr nC
CDL=00 01 (((( NN(D0N(N aN(N(N QN(N(D m1 (N(N( en(N(Nm(N(mNIN(N(N(. n(N.(Nm

C-4 M NM " M M C14 l N (NN(fnNNN ((N(NN(C4N-4N4N(C4NNNN

NI ~ ~ ~ ~ ~ r (NNNNNNNNn((((((( r(N(N( r(N(N(r-(n(r- n( f-(M(N -N(N(N(,N
f- e4mNMNr - ne4e nN 4C 1 * 1

en re ,e -e -Mr nr - ,Mr

w N (7 4m- n m-
N N N N N N C N N N N N N N N (NN C-4 N MN N 4N C4N N N C% N

I C4 wI 3 o N w N c m 1 4- M aN N N N " C N N N N N N N ( NN (4 -4 NI(NNN(( ((4



W. 
wv- 

W:l

140

Ln tn Ln %n o o Ln Ln Ln Ln Ln Ln kn Ln tn wi o o Q -0 10 -W o -W 10 -W 10 -W 10 -r
r% eq C4 N N 04 C4 N C4 N " N N N N N N C4 C4 N eq (4 N N N " eq N N N

in in Ln Ln Ln Ln wi vi Ln Ln Ln Ln Ln o tn n -W o Ir C4 w %0 -W %D -W o -W o -W o -W 10
N C4 C4 N " N C4 N N N N (4 N N N r4 N N N N N (4 N N N N N N ell

%n Ln &n tn tn kn tn o %n Ln Ln tn o tn Ln vi Q ev %a -W %a -W %0 -W %0 -W 10 -W
N N N C4 N N eq N N N N N N N N C4 C4 N 4 N N N N C4 N N (4 C4 N

in Ln Ln Ln un %n wi vi wi wi u) vi wi vi u) Ln r 4 -r C4 -W a IF %a w %0 -W o W %0
N N N N N N N N N N N N N C4 N N N N N N C4 N N N r4 N C4 N N

I
ul 0 ui a) kn in Ln Ln Ln kn Ln tn Ln Ln Ln Ln I o -W NO o %a -W 10 IV %0 v %C) w a Nw

N N N C4 N N 14 N N N N N N N C4 1 C4 N (4 " em N N N " C4 C4 N N

kn in Ln %n kn Ln wi V) wl Ul V) wl V) LA V) tn -W %0 -W -W Ir %a -W o -W a W NO Nw a
(4 C4 C4 N C4 C4 C4 C4 N 04 N N C4 N N N N N C4 (4 N N cm C4 N N N C4

'oLn Ln Ln in Ln Ln Ln Ln tn Ln Ln in Ln Ln 6n Ln %0 10 %D -W %D C4 a -W %D w %V -W %D -W 4 -W
N eq N V4 N N N N N N N N N N N C4 C4 C4 N C4 cm N N N (N C4 C4 N N N

tn in Ln in in in tn in Ln Ln Ln %n vi vi Ln kn v %o -w %o -w -w o "w %o -w %v w a 10
N " C4 C4 C4 4 C4 C4 C4 C4 " C4 C4 C4 C4 C4 0 N N eq N N " N N N N N C4 cli C4

E-, %0 w o w %D .0 %0 w %a w 'a w %a w 'a .0U Ln n Ln tn in Ln Ln in Ln Ln &n o %n Ln Ln Ln u
oc N " N . N N N C4 C4 N N N C4 N C4 N N C4 C4 C4 N C14

1 6n o o o o Ln Ln Ln Ln Ln 0 o Ln Ln o Ln v %a It %0 -W a w %D v o v a v 10 v %0
eq I N N N C4 C4 N N N C4 N N N N N N N " N N N " C4 N N N " N C4 N
eQ I N
= I Ln o 0 0 &n tn 0 tn o o Ln o %n o LA tn 0 %a -w o v %o v %o w %o w %a w %0 w %o -w

(4 CN C4 " N N C4 N N " C4 N C4 " C4 C4 rk. N C4 N C4 N N N N CN C4 " C4 <4 N

I %n o o o Ln o Ln Ln Ln Ln Ln tn %n tn o Ln Q r %0 v %a -W a v w v a a -W a
N " C4 (4 N N C4 C4 " C4 N N C4 N esa C4 N N C4 C4 N N N C4 C4

I o tn Ln tn Ln o o Ln Ln Ln o o o o o o %0 v %0 w a v a v 10 v %0 w %0 v 10 v
N N (4 C4 (4 C4 (4 N " C4 C4 N CN C4 cm C4 N N C4 M N (4 N N C4 N N N C4 C4 C4

I kn Ln un Ln tn &n Ln Ln Ln tn o kn ui ai ui o w a -W 10 -W %a -Ir %D V %0 V o -W 10
I N N C4 N 0414" C4 C4 " N C4 CN tN N N 1 N N r4 " C4 eq N no C4 C4 N N C4 C4 C4 CN

u in in Ln vs ui ui ul vi wi v) Ln kn Ln Ln Ln n %a -w %a -W %0 -0 ko -W %a v %D -W ko -W %a -W
1 14 ^1 N N N " 04 (N C4 (4 N CM <19 CY (14 N 1 N N 14 (4 " N e4 N C4 cm (4 C4 N (4 C4

tn Ln Ln Ln Ln Ln Ln Ln tn Ln Ln tn o tn Ln Ln w %a w %o -w %a -w %o ir %a -w %o -w %o -w %o

u N (4 N C4 N 04 C4 N N (4 C4 fm C4 N C4 N r4 N C4 C4 C4 C4 C4 C4 04 C4 C4 C4

0

cn 04 W C4 W M W N M ?M W M W 1-4 W N W P' fn r- f r' fn r' Fn f- M f-
04 4 C4 C4 C4 (4 C4 N N N " N eq N C4 C4 em C4 N N N N N C4 C4 C4 N f4 N N

w C4 w N 0 C4 0 N 0 N w w N w m r- m r m r- m r m r m r m
m N " C4 C4 N " N (4 " N C4 N N N

w w N w em m w C4 0 14 w 4 w m r. m f m r, m r m r m r- m r- m r-
C4 N . . . C4 N N C4 M N N N N C4 N N C4 N N N N

w N 0 N w N w N w N w en r, m
C4 N N N N N N C4 N N N N N C4 N N N C4 N N

I IN w N w N w N cc w N w N w w
14 C4 N N N N N N 14 N N N N N N N

ao N w N CC40 N C04D N cc N Go N N co N M r M r, en C, en r, rn r- M
1 N N N fm eq e4 N N C4 C4 N N N (4 C4 C4 N N N N N " N N N N N N N

Ln i
cm w N Go e4 w CY Q* r4 w N ao C4 0 " w en r- m r, en rl m r, f" r I" r rn r- r" r-
N cm N N N cla N C4 N N C4 N NN C4 C4 N 14 N " N N N N N N N N N N N N

W (4 CW (4 'CC C4 CM c4 W C4 00 C4 W C4 CC C4 i% r M r, ffl r- M n. ffl r- en r en r en r rn
Ln 0 N N 4 N 4 (4 4 N C4 N N C4 N N N (4 o (4 N N N N C4 N N C4 N N N N N C4 N

u N 0 C4 w N z N w 0 w NN co N co U r- r, m r, m r. tn r- n r- m r-

w N w eq w N w N w N w N w N 0 N I r m r en C, m r m r, m r en r, m f en
N N N N (4 N N N N N N N N N N N N N N N N N N N N C4 N N N N -4

N
r4 w N w N w N m " w N w N = N w en r- n r- n r, n r, e-i r -i r en r- f-
N (4 C-4 C4 N f4 N fm C4 N eN N N N C14 N N rq N N r4 C4 N N C4 N N C4 N N r4 N

I C* C4 w N co N w fm w N w C4 w CN = C4 r- 'N r- r- ) r, C n r- 4n r. M r, M.r-
C4 N C4 N N N (4 N CN N C4 N C4 N N N N C4 N C4 N N CIA r4 C4 C4 CM N N C4 C4

k N w N w N w N w N m N w N CD rq w rn r m 1 en r F" rl i-n r, en r rIN r r,
N C4 C4 cNa C4 N em N N C4 N N C4 N N N N CNI N Cj C4 N CNI N N N N C4 N (4 rq N

co N (m C4 w N ao C4 (m (.4 OD N a* C4 ff) r.. ffl I-- en r r- In r, In r-
IOID. NN (4 N C4 N N N N N C4 r4 " C4 N N N N N C14 C4 N C4 C-4 N N C14 C4 r4 C-4 N N

e4 (a N co C4 w C14 (D C4 w (14 w N w N co l rl en r- en en r- M r. ff r.. -1 r. r-
N (4 (4 N (14 N N 4 C4 f4 C4 N " C4 N CN N C4 (4 N N N CN N r-4 C4 N CN N N C4 C4

= f-4 00 N cc C14 co C14 cc C4 00 C4 co rq m C4 C.) r, m r- ll r- en r
C4 N N 14 C4 C4 N N N C4 (14 (4 N (4 N r4 "a 14 rq N rq rq N (,a N r4 4 4 (4 r4



141

N N 4 cm C4 C4 C4 (4 N . . . . N N N (4 N N

ID w %0 V %a V %0 w %a V 0 V V Q w a V I'D a V V V
N N N N N N N . . . . . CIA N N N N

-W w w Na V %0 V 10 V %0 V %a VIC V 10 %0 V ID V %D V %a V %0 V w V Io V O
C4 C4 N C4 " C4 N N N cm N N N N N C4

-V %0 w %0 w %a W In W %0 W Q V 0 w V %C w %0 w %0 W ID V Ia V IV V %a Ir
eq eq " N N cm " C4 (4 N N N N N C4 C4 (4 N N N N " C4 C4 C4 N N (4 N

V %a V %0 V ID V %0 -0 %a V %D V %0 -W O %0 IV a V 10 V %0 IV 10 w %a w 10 V O
C4 C4 N (4 (4 N C4 C4 C4 CIA C4 N " N N N 1 C4 N N C4 N C4 C4 N C4 C4 elf C4 eq 04 C4 N

%0 V %a V %0 V No V ID V I* V ko V %0 V : ID -0 %D -0 a V %0 V 10 -0 10 w %0 w %0 V
-4 C4 eq N N C4 N " C4 C4 N N C4 N CIA N 1 cm . . . . . C4 N N C4 C4

%a V ID V 0 V 10 V %a -0 %a V %0 W %0 W %0 IV %0 IV %a V Q V IC V %a V O
N (4 (4 (4 N N N " N C4 eq N C4 CIA C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 (4 (N C4 C4 CN N

V wO VOWD; %QV low 'a w %0 w %DWo 'r %0 V IOV 0 V
N N N C4 C4 N N N N N " N C4 0 N N C4 C4 rNa N C4 N

N N C4 N C4 N N C4 N N r4 C4 N C4 CN C4 V ko w No V %0 V %0 w 10 IV 10 V %0 V 10
C4 rli N N r-A C4 " C4 C4 C4 N N N C4

w IV %C V 10 V %0 V %Q V ID V %0 V ID V I %OVID,-VIC VIC V 10 VIC VIC VIC weQ I . . . C4 C4 N " eQ N C4 C4 C4 " " N CN N " r4 N
e4

V %0 V %0 V ID -W 10 w %0 w %a V %OV 10 w OVID VIC w ID V 'D w 'D VIC V IDN C4 N N N N N N CN C4 N N N N N C4 C4 N N N N N C4 N
V ID %a w

N C4 (4 C4 rq C4 C4 N (14 C-4 N N C4 94 C4 C4 1 CIA C4 C4 C4 N N N N N rq N C4 C4 N C4
V 0 V Ic w %0 w %0 IV ID W a V %Q V %0 IV %a w %0 V 10 V 10 V 10 V %a V 10 V ON C4 N C4 C4 (4 N N N N N (4 N C4 N cq N N C11 N C4 C4 N N N N c4 r4 c4 c4 N N
I* V %0 V 10 w a w O V 10 V %0 V 10 V %a w ID w ID V ID w %0 V 10 IV 10 V a V1 eq N " r4 C4 c1l cN C4 N (4 C4 C4 N N eq CIA N N N N C4 N N C4 (4 N C4 N N
V %0 V %0 V 'a V IC V 'a V IC IV %0 V IV 10 10 V %0 W ID V Q V Q V 10 V %a V 10N N C4 C4 eq (N C4 N C4 C14 N N C4 C4 CIO N N C4 C4 C4 (4 CIA N N N C4 "A 04 N N N N
%a V 10 V %D V w w ID V %0 w a V %a w Io V w V w w Ia w 10 V w V w V 10 V

N N C4 N N N N " N N C4 " N N N N

r, rl m r. m rl m r m r- m r m r- m In 4n kn in In 4n 0 0 Ln 0 0 0 0 0 0 0
N C4 N N (4 N C4 N C4 " N " C4 N CIA C4 (4 N N N C4 CIA N N r

m r r- m r t m r- in kn o tn %n %n In In Ln In In Ln In In In vi
C4 N C4 N N N (4 N (4 N N N N N N C4 N C4 N N N N C4 " N C4 N

m In In in vs In In Ln o In In In Ln o In In o
N C4 C4 " N N (4 N cq N N " C4 C4 " N N N C4 rl N N C4 C4 C4 (4 N

en r- M r- M r- M r- M r- tn r- cl r. M r, in %n o o o In o In o In In o In In In In
W (11 N C4 C4 N N N C4 " N N C4 N " C4 N N N C4 N N N N N N N " C4 C4 C4 C4 N

m r m r- m r- m r- m r m r m r- en In in 0 0 U*W In nooooo4z
M C4 N " " N C4 " " N " N N N C4 N C4

4 m r- m r on r- m r- m r- m r. m r- m r- o o o In o o 0 0 0 In In Ln In In In In
c4 . . . c4 r4 N N N c4 N " c4 N e4 c4 N C4 N " N C4 r4 C4 N N C4 N N N

-4 1
r, en r. rn f, en r, Fn f- M r- en r- rn r, Fn In kn Ln In Ln .1 -A A In vi Iii In In In In In
C4 C4 N N e4 C4 C4 N C4 N C4 C4 N C4 t4 C4 (4 N (N C4 C4 C4 N (4 N N N " N N N C4

n f, en r m r, en r- n r- rn r- rn r- (n r, In in In In In In In In In In In Ln Ln In In v)
N N C4 (4 N N C4 N C4 N N C4 N C4 csl " 0 N cla (4 N N N C4 N rq C4 C4 C4 C4 N N

E-
u r- en r- tin r- fn r- (n r, en r- en r rn r m wi wi In Ln Ln tn In In In In &n ui In o In In

C4 " rl C4 N N (N (4 C4 N C4 N " N N C4 C4 C4 N " N N C-4 N C4 C4 N "

04 r- m r.. m r, IN r m r, m r, In r, tn o o In In o v) In Ln In tn In In In In tn
CIS (4 eq r4 C4 e4 N C4 C4 C4 r4 C4 N N N N 3 N e4 C14 N C4 N N C4 C14 N N N N N

r. In rl In r, In r, 'In r- In r m r, I" r, en Ln In 0 0 A u' 0 0 0 In In In n In In o
N (14 CIA V14 C4 N C4 r4 (Is em IN elf e4 C4 c"s N r e4 elq N N " " N " (4 04 r4 ry " " N r4

en r lln r M r M r- M r- M r r, f- In In o In In In In In In In In n In In n In
C-4 J C4 N C4 (4 e4 N " N N N C4 fN r4 ?4 N N N C4 N C4 " r4 C4 N " C4 N " N 4

r en r en r en r, n r, In r. -n r en r, en vi In In In In In In In In In In In In In In In
C4 N N N (4 N N N N N N N N N N N N " C4 N C4 C4 C4 C4 N N r.4 N C4 C4 N

r1l r M r 'n r en r- en f rn r r 'n r 0 In In In 0 0 0 In In In In o In In In n
C4 r4 f14 N 4 N N N rN N (4 N N C4 C4 1 C4 N N N C4 " N C4 N C4 N N C4 N N r4

r r r In r, In r- In r- 'In r- en r- : In o In In In In In In In In In In n In In o
(4 4 N 14 C4 N N r4 N N N N N C4 C4 C4 1 N 4 N N N N N cN r4 N r4 N 4 rq C4 N

r, m r- r- t- r- i In A n n In In n Ln In In In In o In n n
N N N C4 C4 N C-4 f4 N N C4 rq N N I rA N C4 CN N C4 N N r4 4 N C4 r1l N N



142

INTENSITY HISTOGRAMS FOR EXAMPLE 5

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12
0- /128 0 0 0 0 0 0 0 0 0 0 0 0
i/10 0 0 0 0 0 0 0 0 0 0 0 0
2/ 0 0 0 0 0 0 0 0 0 0 0 0 0
3/ 0 0 0 0 0 0 0 0 0 0 0 0 0
4/ 0 0 0 0 0 0 0 0 0 0 0 0 0
5/ 0 0 0 0 0 0 0 0 0 0 0 0 0
6/ 0 0 0 0 0 0 0 0 0 0 0 0 0
7/ 0 0 0 0 0 0 0 0 0 0 0 0 0
8/ 0 0 0 0 0 0 0 0 0 0 0 0 0
9/ 0 0 0 0 0 0 0 0 0 0 0 0 0
0/ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
12/ 0 0 0 0 0 0 0 0 0 0 0 0 0
13/ 0 0 0 0 0 0 0 0 0 0 0 0 0
14/ 0 0 0 0 0 0 0 0 0 0 0 0 0
15/ 0 0 0 0 0 0 0 0 0 0 0 0 0
16/ 0 0 0 0 0 0 0 0 0 0 0 0 0
17/ 0 0 0 0 0 0 0 0 0 0 0 0 0
18/ 0 0 0 0 0 0 0 0 0 0 0 0 0
19/ 0 0 0 0 0 0 0 0 0 0 0 0 0
20/ 0 0 0 128 0 0 0 0 0 0 0 0 0
21/ 0 0128 0 0 0 0 0 0 0 0 0 0
22/ 0 128 0 0 0128 0 0 0 0 0 0 0

23 / 0 0 0 0 128 0 128 0 0 128 0 0 0
24 / 0 0 0 0 0 0 0 0 128 0 0 128 128
25 / 0 0 0 0 0 0 0256 0 0 256 0 0
26 / 0 0 0 0 0 0 0 0 128 0 0 128 128
27 / 0 0 0 0 128 0 128 0 0 128 0 0 0
28 / 0 128 0 0 0 128 0 0 0 0 0 0 0
29 / 0 0 128 0 0 0 0 0 0 0 0 0 0
30 / 0 0 0 128 0 0 0 0 0 0 0 0 0
31 / 0 0 0 0 0 0 0 0 0 0 0 0 0
32 / 0 0 0 0 0 0 0 0 0 0 0 0 0
33 / 0 0 0 0 0 0 0 0 0 0 0 0 0
34 / 0 0 0 0 0 0 0 0 0 0 0 0 0
35 / 0 0 0 0 0 0 0 0 0 0 0 0 0
36 / 0 0 0 0 0 0 0 0 0 0 0 0 0
37 / 0 0 0 0 0 0 0 0 0 0 0 0 0
38 / 0 0 0 0 0 0 0 0 0 0 0 0 0
39 / 0 0 0 0 0 0 0 0 0 0 0 0 0
40/ 0 0 0 0 0 0 0 0 0 0 0 0 0
41 / 0 0 0 0 0 0 0 0 0 0 0 0 0
42/ 0 0 0 0 0 0 0 0 0 0 0 0 0
43 / 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0
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INTENSITY HISTOGRAMS (CONTINUED)

- - --45 /-0 0 0 0 0 0 0 0 0 0 0 0 0
46/ 0 0 0 0 0 0 0 0 0 0 0 0 0
47/ 0 0 0 0 0 0 0 0 0 0 0 0 0

48/0 0 0 0 0 0 0 0 0 0 0 0 0
49/0 0 0 0 0 0 0 0 0 0 0 0 0
50 /128 0 0 0 0 0 0 0 0 0 0 0 0
51 /10 0 0 0 0 0 0 0 0 0 0 0 0
52/ 0 0 0 0 0 0 0 0 0 0 0 0 0
53/ 0 0 0 0 0 0 0 0 0 0 0 0 0
54/ 0 0 0 0 0 0 0 0 0 0 0 0 0
55/ 0 0 0 0 0 0 0 0 0 0 0 0 0
56/ 0 0 0 0 0 0 0 0 0 0 0 0 0
57/ 0 0 0 0 0 0 0 0 0 0 0 0 0
58/ 0 0 0 0 0 0 0 0 0 0 0 0 0
59/ 0 0 0 0 0 0 0 0 0 0 0 0 0
60/ 0 0 0 0 0 0 0 0 0 0 0 0 0
61/ 0 0 0 0 0 0 0 0 0 0 0 0 0
62/ 0 0 0 0 0 0 0 0 0 0 0 0 0
63/ 0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 25.00 25.00
1 25.00 3.00
2 25.00 4.00
3 25.00 5.00
4 25.00 2.00
5 25.00 3.00
6 25.00 2.00
7 25.00 0.00
8 25.00 1.00
9 25.00 2.00

10 25.00 0.00
11 25.00 1.00
12 25.00 1.00

12 "5 0 1.0"
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I--

EXAMPLE 6 "STRIPED"

THE FOCUSED PICTURE
--------------------------------------------------

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 .

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 ""

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 500 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

! ... . . . .. . . . *

0 5 0 5 0 5 0 5 0 5 0 5 0 50 ,,
"0 50 050 050 050 0 50 0 50 0 50 0 50
[-0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 "
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INTENSITY HISTOGRAMS FOR EXAMPLE 6

FUZZ FACTOR
/ 0 1 2 3 4 5 6 7 8 9 10 11 12

0- /128 0 0 0 0 0 0 0 0 0 0 0 0
1/10 0 0 0 0 0 0 0 0 0 0 0 0
2/ 0 0 0 0 0 0 0 0 0 0 0 0 0
3/ 0 0 0 0 0 0 0 0 0 0 0 0 0
/ 0 0 0 0 0 0 0 0 0 0 0 0 0
/ 0 0 0 0 0 0 0 0 0 0 0 0 0
/ 0 0 0 0 0 0 0 0 0 0 0 0 0
/ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
2/ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
1 / 0 0 0 0 0 0 0 0 0 0 0 0 0
2 / 0 0 0 0 0 0 0 0 0 0 0 0 0

21 / 0 0 0 0 128 128 0 0 0 0 0 0 0
22 / 0 0 0 0 0 0 0 0 0 0 0 0 0
23 / 0 0 0 0 0 0 128 0 128 128 0 0 0
24 / 0 0 0 0 0 0 0 0 0 0 128 0 128
25 / 0 0 0 256 0 0 0 256 0 0 0 256 0
26 / 0 0 0 0 0 0 0 0 0 0 128 0 128
27/0 0 0 0 0 0 128 0 128 128 0 0 0
28 / 0 0 0 0 0 0 0 0 0 0 0 0 0
29 / 0 0 0 0 128 128 0 0 0 0 0 0 0
30/ 0 0 128 0 0 0 0 0 0 0 0 0 0
31/ 0 0 0 0 0 0 0 0 0 0 0 0 0
32/ 0 0 0 0 0 0 0 0 0 0 0 0 0
33 / 0 0 0 0 0 0 0 0 0 0 0 0 0
34 / 0 0 0 0 0 0 0 0 0 0 0 0 0
35 / 0 0 0 0 0 0 0 0 0 0 0 0 0

36 / 0 0 0 0 0 0 0 0 0 0 0 0 0378/ 0 0 0 0 0 0 0 0 0 0 0 0 0

38/ 0 0 0 0 0 0 0 0 0 0 0 0 0
39 / 0 128 0 0 0 0 0 0 0 0 0 0 0
401 0 0 0 0 0 0 0 0 0 0 0 0 0
42/0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 ",43 0 0 0 0 0 0 0 0 0 0 0 0 0
44 / 0 0 0 0 0 0 0 0 0 0 0 0 0

-7 7.]
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INTENSITY HISTOGRAMS (CONTINUED)

45-/-0 0 0 0 0 0 0 0 0 0 0 0 0
46/ 0 0 0 0 0 0 0 0 0 0 0 0 0
47/ 0 0 0 0 0 0 0 0 0 0 0 0 0
48/ 0 0 0 0 0 0 0 0 0 0 0 0 0
49/ 0 0 0 0 0 0 0 0 0 0 0 0 0
50 /128 0 0 0 0 0 0 0 0 0 0 0 0
51/ 0 0 0 0 0 0 0 0 0 0 0 0 0
52/ 0 0 0 0 0 0 0 0 0 0 0 0 0
53/ 0 0 0 0 0 0 0 0 0 0 0 0 0
54/ 0 0 0 0 0 0 0 0 0 0 0 0 0
55/ 0 0 0 0 0 0 0 0 0 0 0 0 0
56/ 0 0 0 0 0 0 0 0 0 0 0 0 0
57/ 0 0 0 0 0 0 0 0 0 0 0 0 0
58/ 0 0 0 0 0 0 0 0 0 0 0 0 0
59/ 0 0 0 0 0 0 0 0 0 0 0 0 0
60/ 0 0 0 0 0 0 0 0 0 0 0 0 0
61/ 0 0 0 0 0 0 0 0 0 0 0 0 0
62/ 0 0 0 0 0 0 0 0 0 0 0 0 0
63/ 0 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 25.00 25.00
1 25.00 14.00
2 25.00 5.00
3 25.00 0.00
4 25.00 4.00
5 25.00 4.00
6 25.00 2.007 25.00 0.00
8 25.00 2.00
9 25.00 2.00
1 25.00 1.00
81 25.00 0.00

12 25.00 1.00

12 25.00 1.00

9 -" .

- - -,. . . . . . . . . . . . .
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EXAMPLE 7 "RANDOM"

THE FOCUSED PICTURE

26 13 10 59 49 6 5 49 19 14 0 45 22 12 20 47
48 37 11 7 35 6 19 39 34 43 37 34 1 28 51 8
37 38 58 25 13 17 58 57 14 63 46 59 40 39 0 12
40 19 46 36 63 35 0 22 17 43 57 11 36 43 12 13
47 14 33 1 60 59 50 9 10*47 54 6 14 63 8 54
24 42 25 17 62 56 61 23 2 31 19 52 55 7 15 17
2 17 8 21 5 36 39 28 58 27 37 3 4 51 13 4

59 0 33 57 42 44 37 55 35 21 1 49 10 44 12 24
48 18 45 10 35 4 40 22 32 61 26 42 51 4 12 4
0 38 50 63 42 20 11 33 46 28 54 27 46 29 20 62

51 12 30 48 20 13 39 29 34 7 63 62 13 62 0 45
28 57 9 4 21 24 12 1 16 51 60 13 9 50 27 40
15 23 0 58 16 49 52 5 18 26 30 54 53 31 3 23
32 5 28 19 45 38 32 40 45 58 53 44 41 56 39 45
514129253358 7 206010254241
59 9 1 3 55 33 25 10 51 35 62 31 32 23 48 22

OVA37 8 8 5 1 1 5 5 14634659 0 9 1
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INTENSITY HISTOGRAMS FOR EXAMPLE 7

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12
0/7 0 0 0 0 0 0 0 0 0 0 0 0
/ 5 0 0 0 0 0 0 0 0 0 0 0 0

2/2 0 0 0 0 0 0 0 0 0 0 0 0
3/3 0 0 0 0 0 0 0 0 0 0 0 0
4/7 0 0 0 0 0 0 0 0 0 0 0 0
5/4 0 0 0 0 0 0 0 0 0 0 0 0
6/3 0 0 0 0 0 0 0 0 0 0 0 0
7/4 1 0 0 0 0 0 0 0 0 0 0 0
8/3 0 0 0 0 0 0 0 0 0 0 0 0
9/4 0 0 0 0 0 0 0 0 0 0 0 0
0/ 6 0 0 0 0 0 0 0 0 0 0 0 0

11 /3 4 0 0 0 0 0 0 0 0 0 0 0
12 /7 2 0 0 0 0 0 0 0 0 0 0 0
13 /7 2 1 0 0 0 0 0 0 0 0 0 0
14 /4 5 1 0 0 0 0 0 0 0 0 0 0
15 /2 8 0 0 0 0 0 0 0 0 0 0 0
16 /2 7 3 1 0 0 0 0 0 0 0 0 0
17/ 5 12 5 2 1 0 0 0 0 0 0 0 0
18 /2 4 2 3 0 0 0 0 0 0 0 0 0
19 /6 8 6 4 2 1 0 0 0 0 0 0 0
20 /5 7 7 2 6 2 1 0 0 0 0 0 0
21 /3 9 5 7 5 1 1 0 0 0 0 0 0
22 /4 5 5 10 5 3 1 2 0 0 0 0 0
23 /4 8 16 6 10 8 4 1 3 0 0 0 0
24 /3 4 111 0 9 12 8 6 4 1 0 0 0
25 /5 6 9 15 15 15 11 6 6 7 2 0 0
26 /3 6 10 13 13 8 14 14 10 8 10 7 6
27 / 3 6 15 12 12 21 17 18 17 16 11 11 10
28 / 5 11 9 12 16 20 18 19 19 20 20 17 16
29 /3 3 6 15 19 16 23 24 29 29 29 31 27
30 / 2 7 9 11 8 17 24 25 21 26 32 29 37
31 /3 7 12 9 11 19 25 26 25 24 29 38 36
32 / 4 5 11 13 17 14 9 16 25 32 35 38 42
33 / 5 5 12 18 18 11 14 21 19 19 24 32 36
34/ 3 7 10 11 7 12 19 17 19 28 23 16 12
35 / 5 7 13 19 18 14 17 17 23 15 18 12 13
36 /3 6 16 10 11 17 10 14 9 8 4 11 11
37 / 6 5 9 10 13 11 10 8 10 10 10 8 7
38 / 3 10 11 7 9 5 7 10 8 8 7 6 2
39/ 5 11 7 10 7 6 13 7 4 2 2 0 1
40/ 5 14 7 5 4 11 7 3 3 3 0 0 0
41 /3 5 5 5 5 6 2 2 1 0 0 0 0
42 / 5 9 4 3 4 3 1 0 1 0 0 0 0
43 /3 4 3 3 4 1 0 0 0 0 0 0 0
44 / 3 5 4 3 2 0 0 0 0 0 0 0 0
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INTENSITY HISTOGRAMS (CONTINUED)

45 /6 4 3 0 2 0 0 0 0 0 0 0 0
46 /4 6 1 3 1 2 0 0 0 0 0 0 0
47 /3 6 2 1 0 0 0 0 0 0 0 0 0
48 /4 2 1 1 0 0 0 0 0 0 0 0 0
49 /4 1 1 0 0 0 0 0 0 0 0 0 0
50 /3 2 2 0 2 0 0 0 0 0 0 0 0
51 /7 3 0 1 0 0 0 0 0 0 0 0 0
52 /2 2 0 1 0 0 0 0 0 0 0 0 0
53 /2 1 2 0 0 0 0 0 0 0 0 0 0
54 /4 1 0 0 0 0 0 0 0 0 0 0 0
55 /3 3 0 0 0 0 0 0 0 0 0 0 0
56 /2 0 0 0 0 0 0 0 0 0 0 0 0
57 4 0 0 0 0 0 0 0 0 0 0 0 0
58 /6 0 0 0 0 0 0 0 0 0 0 0 0
59 5 0 0 0 0 0 0 0 0 0 0 0 0
60 /3 0 0 0 0 0 0 0 0 0 0 0 0
61 /2 0 0 0 0 0 0 0 0 0 0 0 0
62 /5 0 0 0 0 0 0 0 0 0 0 0 0
63 /5 0 0 0 0 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 30.73 18.77
1 30.88 11.22
2 30.99 7.923 31.04 6.82
4 31.17 6.28
5 31.21 5.39
6 31.29 4.60
7 31.36 4.04
8 31.43 3.81
9 31.45 3.39

10 31.44 3.02
11 31.48 2.77

12 31.44 2.61
!

_

ii

' 1. - ~ i . ;..
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EXAMPLE 8 "MIXED"

THE FOCUSED PICTURE

26 13 10 59 49 6 5 49 19 14 25 25 25 50 50 50
48 37 11 7 35 6 19 39 34 25 25 25 25 25 50 50
37 38 58 25 13 17 58 57 25 25 25 25 25 25 25 50
40 19 46 36 63 35 0 25 25 25 25 25 25 25 25 25
47 14 33 1 60 59 25 25 25 25 25 25 25 25 25 25
0 50 0 50 0 50 0 0 0 0 0 10 30 30 30 30

50 0 50 0 50 0 0 0 0 0 0 10 30 30 30 30
0 50 0 50 0 50 10 10 10 10 10 10 10 10 10 10

50 0 50 0 50 0 0 0 0 0 0 10 40 40 40 40
0 50 0 50 0 50 0 0 0 0 0 10 40 40 40 40

50 0 50 0 50 0 63 63 63 63 0 50 0 50 0 50
0 50 0 50 0 50 63 63 63 63 0 50 0 50 0 50

50 0 50 0 50 0 63 63 63 63 0 50 0 50 0 50
5 5 5 5 5 5 63 63 63 63 0 50 0 50 0 50

40 40 5 5 5 5 0 0 0 0 0 50 0 50 0 50
40 40 5 5 5 5 5 5 5 5 0 50 0 50 0 50

'.1

*.**.*%~~**'~. S. ~ .. - . . . . . . . .- - I .
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INTENSITY HISTOGRAMS FOR EXAMPLE 8

FUZZ FACTOR
I / 0 1 2 3 4 5 6 7 8 9 10 11 12

0/67 0 0 0 0 0 0 0 0 0 0 0 0
1 /1 9 0 0 0 0 0 0 0 0 0 0 0
2 /0 2 6 0 1 0 0 0 0 0 0 0 0
3 /0 3 1 7 6 0 2 2 2 0 0 0 0
4 /0 7 7 5 6 5 0 0 0 1 0 0 0
5/19 6 9 8 7 9 4 3 2 1 0 0 0
6 /2 1 4 4 1 7 3 2 1 0 0 0 0
7 /1 6 3 3 3 0 4 1 2 3 2 0 0
8 /0 7 0 2 0 2 5 3 1 2 2 0 0
9 /0 2 0 1 2 1 5 4 0 1 2 3 0

10 /15 3 0 0 4 2 1 4 6 0 1 3 2
11/ 1 13 5 2 2 2 1 3 3 6 2 0 4
12 /0 8 8 3 2 0 1 2 5 3 3 3 0
13 /2 1 6 3 2 4 3 3 1 4 5 4 3
14/ 2 1 0 3 2 4 3 4 6 2 3 4 3
15/ 0 6 2 2 2 2 3 3 2 5 4 4 3
16 /0 4 1 8 7 3 4 5 7 4 3 4 5
17 /1 4 1 4 2 7 7 3 2 7 6 4 6
18 /0 3 2 2 7 3 2 7 5 3 8 8 9
19 /3 0 6 5 1 4 6 1 4 4 2 5 3
20 /0 2 20 20 7 9 4 7 4 4 9 10 11
21 /0 1 18 4 22 19 6 5 8 12 9 10 10
22/ 0 22 5 1 4 17 11 9 10 9 12 9 11
23 /0 6 7 8 17 4 25 8 20 29 13 14 11
24 /0 1 2 7 8 9 10 10 16 9 15 14 30
25 / 35 18 19 41 17 13 11 48 14 8 22 25 14
26 /1 9 12 9 8 6 15 14 19 16 23 22 20
27 /0 2 7 5 21 16 24 16 24 23 11 14 16
28 / 0 21 4 10 7 17 14 12 10 17 15 11 16
29 /0 9 20 8 18 21 11 5 11 17 20 22 19
30 /8 5 18 21 7 15 16 14 14 9 17 16 16
31 / 0 1 8 6 9 7 10 14 14 18 14 18 18
32 /0 2 3 3 5 8 7 12 10 12 7 3 9
33 /1 2 7 5 8 3 6 5 8 5 6 6 5
34/ 1 0 5 7 7 8 6 4 5 2 2 7 2
35/ 2 6 4 7 5 3 5 4 3 1 3 4 1
36 /1 3 2 3 5 4 1 4 2 5 3 2 2
37/ 2 3 0 6 3 1 2 0 1 1 2 2 2
38/ 1 5 5 0 0 2 2 1 0 1 4 0 0
39/ 1 18 2 2 2 1 1 0 1 3 2 1 1
40 /13 2 3 3 1 0 4 3 4 2 1 1 1
41 /0 2 3 3 3 7 0 2 1 0 0 0 1
42 /0 1 4 0 0 0 2 1 1 2 0 2 1
43 /0 2 0 0 0 2 0 1 0 1 2 0 0

6 44 /0 0 1 0 0 0 1 0 2 3 0 0 0

6j ..-..
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INTENSITY HISTOGRAMS (CONTINUED)

45 /0 3 1 0 6 0 3 2 0 0 0 0 1
46 /1 1 0 0 0 2 0 0 2 0 1 1 0
47 /1 1 0 6 0 2 0 0 0 1 0 0 0
48/1 1 0 0 2 0 0 1 3 0 0 0 0
49/2 3 2 2 1 0 1 2 0 0 0 0 0
50 /48 4 1 2 1 1 0 0 0 0 0 0 0
51 /0 1 6 0 1 0 0 1 0 0 0 0 0
52 /0 1 1 0 0 0 0 1 0 0 0 0 0
53 /0 0 0 0 0 0 0 0 0 0 0 0 0
54 /0 0 0 0 0 0 2 0 0 0 0 0 0
55 /0 0 0 1 0 0 1 0 0 0 0 0 0
56 /0 7 0 0 0 0 1 0 0 0 0 0 0
57 /1 0 0 0 0 0 0 0 0 0 0 0 0
58 /2 0 1 0 0 0 0 0 0 0 0 0 0
59 /2 0 0 0 0 3 0 0 0 0 0 0 0
60 1 0 0 0 0 1 0 0 0 0 0 0 0
61/0 0 0 0 0 0 0 0 0 0 0 0 0
62/ 0 1 0 0 0 0 0 0 0 0 0 0 0
63 /17 4 4 4 4 0 0 0 0 0 0 0 0

HISTOGRAM ANALYSIS

FUZZ FACTOR MEAN STANDARD DEVIATION

0 25.20 21.96
1 25.09 14.66
2 25.08 12.23
3 25.04 11.44
4 25.01 11.02
5 25.04 10.16
6 25.17 9.23
7 25.17 8.52
8 25.26 8.04
9 25.32 7.44

10 25.29 6.74
11 25.33 6.29
12 25.33 5.84
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